Math 176 Final Practice Version A

1. Explain the following three concepts of calculus. Give a mathematically precise definition while also providing examples with geometric intuition.
(i) Explain the concept of limit.
(ii) Explain the concept of derivative.
(iii) Explain the concept of integral.

Math 176 Final Practice Version A

2. Suppose $f(x)=x^{2}$ and $g(x)=x-1$. Evaluate the composition

$$
(f \circ g)(2)=\square
$$

3. Evaluate the following limits:

$$
\lim _{x \rightarrow e^{2}} \ln x=\square \quad \text { and } \quad \lim _{x \rightarrow 1}\left(\frac{1}{x^{2}-x}-\frac{1}{x-1}\right)=\square
$$

4. Under a set of controlled laboratory conditions, the size of the population P of a certain bacteria culture at time t in minutes is described by $P(t)=3 t^{3}+2 t+1$. The rate of population growth at $t=19$ minutes is

5. Find the following derivatives:

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{3}+3^{x}\right)=\square \quad \frac{d}{d x} \sqrt{9+x^{2}}=\square \\
& \frac{d}{d x}\left(x^{2} \ln \left(3+x^{6}\right)\right)=\square
\end{aligned}
$$

6. The rule for differentiating an inverse funtion is
(A) $\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}$
(B) $\frac{d}{d x} f^{-1}(x)=\frac{-1}{f^{\prime}\left(f^{-1}(x)\right)}$
(C) $\frac{d}{d x} f^{-1}(x)=\frac{f^{\prime}(x)}{f^{2}(x)}$
(D) $\frac{d}{d x} f^{-1}(x)=\frac{-f^{\prime}(x)}{f^{2}(x)}$
(E) none of these.
7. Find the absolute maximum and absolute minimum values of $g(x)=2 x^{3}-3 x^{2}+1$ on the interval $[0,2]$.
absolute maximum $=\square$
absolute minimum $=\square$

Math 176 Final Practice Version A

8. The demand function for a certain make of portable hair dryer is given by

$$
p=\sqrt{255-5 x}
$$

where p is the unit price in dollars and x is the quantity depanded in hundred units/week. Compute the elasticity of demand $E(p)$, determine whether the demand is elastic, unitary or inelastic and find the consumer surples in dollars/week when the price is set at $p=10$.
$E(p)=\square$
$E(10)=\square$
The demand is
(A) elastic
(B) unitary
(C) inelastic

Consumer surplus $=$ \square
9. List all critical numbers for the function $f(x)=x e^{-x}$.

$$
x=\square
$$

10. Consider the function $y=f(x)$ given by the following graph:

(True/False) The function has a relative maximum at $x=0$.
(True/False) The function has an inflection point at $x=1$.
(True/False) The function is concave down on the interval $[-1,0.5]$.

Math 176 Final Practice Version A

11. Use the limit definition of derivative

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

to explain why the derivative of $f(x)=\sqrt{x}$ is $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$.
12. Explain the product rule $(f g)^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$ using limits.
13. Find the equation of the line tangent to $x^{2} y^{3}-y^{2}+x y=1$ at the point $(1,1)$.

Math 176 Final Practice Version A

14. Find the following antiderivatives:

$$
\begin{aligned}
& \int 5 x^{2} d x=\square \int \ln (2 x) d x=\square \\
& \int \frac{x^{2}}{\sqrt{x^{3}-1}} d x=\square \quad \int e^{2 t+3} d t=\square
\end{aligned}
$$

15. Find the definite integral

$$
\int_{0}^{4}\left(x^{2}-3 x+1\right) d x=\square
$$

16. Sketch the graphs of $f(x)=\sqrt{x}$ and $g(x)=-\frac{1}{2} x-1$ and find the area of the region enclosed by these graphs and the vertical lines $x=1$ and $x=4$.
17. State the Fundamental Theorem of Calculus.
