
Math 176 Final Practice Version A

1. Explain the following three concepts of calculus. Give a mathematically precise
definition while also providing examples with geometric intuition.

(i) Explain the concept of limit.

(ii) Explain the concept of derivative.

(iii) Explain the concept of integral.
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2. Suppose f(x) = x2 and g(x) = x− 1. Evaluate the composition

(f ◦ g)(2) =

3. Evaluate the following limits:

lim
x→e2

lnx = and lim
x→1

( 1

x2 − x
− 1

x− 1

)
=

4. Under a set of controlled laboratory conditions, the size of the population P of a
certain bacteria culture at time t in minutes is described by P (t) = 3t3 + 2t + 1.
The rate of population growth at t = 19 minutes is

bacteria per minute.

5. Find the following derivatives:

d

dx
(x3 + 3x) =

d

dx

√
9 + x2 =

d

dx

(
x2 ln(3 + x6)

)
=

6. The rule for differentiating an inverse funtion is

(A)
d

dx
f−1(x) =

1

f ′(f−1(x))

(B)
d

dx
f−1(x) =

−1

f ′(f−1(x))

(C)
d

dx
f−1(x) =

f ′(x)

f2(x)

(D)
d

dx
f−1(x) =

−f ′(x)

f2(x)

(E) none of these.

7. Find the absolute maximum and absolute minimum values of g(x) = 2x3 − 3x2 + 1
on the interval [0, 2].

absolute maximum = absolute minimum =
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8. The demand function for a certain make of portable hair dryer is given by

p =
√
255− 5x

where p is the unit price in dollars and x is the quantity depanded in hundred
units/week. Compute the elasticity of demand E(p), determine whether the demand
is elastic, unitary or inelastic and find the consumer surples in dollars/week when
the price is set at p = 10.

E(p) = E(10) =

The demand is

(A) elastic

(B) unitary

(C) inelastic

Consumer surplus =

9. List all critical numbers for the function f(x) = xe−x.

x =

10. Consider the function y = f(x) given by the following graph:
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(True/False) The function has a relative maximum at x = 0.

(True/False) The function has an inflection point at x = 1.

(True/False) The function is concave down on the interval [−1, 0.5].
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11. Use the limit definition of derivative

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

to explain why the derivative of f(x) =
√
x is f ′(x) =

1

2
√
x
.

12. Explain the product rule (fg)′(x) = f ′(x)g(x) + f(x)g′(x) using limits.

13. Find the equation of the line tangent to x2y3 − y2 + xy = 1 at the point (1, 1).



Math 176 Final Practice Version A

14. Find the following antiderivatives:∫
5x2dx =

∫
ln(2x) dx =

∫
x2

√
x3 − 1

dx =

∫
e2t+3dt =

15. Find the definite integral∫ 4

0

(x2 − 3x+ 1)dx =

16. Sketch the graphs of f(x) =
√
x and g(x) = −1

2x− 1 and find the area of the region
enclosed by these graphs and the vertical lines x = 1 and x = 4.

17. State the Fundamental Theorem of Calculus.


