Math 176 Midterm Practice Version A

1. The equation of the line passing through the points $(1,0)$ and $(2,3)$ may be written in the form $a x+b y=1$ where

$$
a=\square \quad \text { and } \quad b=\square
$$

2. Suppose $f(x)=2 x+1$ and $g(x)=x^{2}$. Evaluate the composition

$$
(f \circ g)(2)=\square
$$

3. Evaluate the following limits:

$$
\lim _{x \rightarrow 4} \sqrt{5+x}=\square \quad \text { and } \quad \lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}=\square
$$

4. Under a set of controlled laboratory conditions, the size of the population P of a certain bacteria culture at time t in minutes is described by $P(t)=3 t^{3}+2 t+1$. The rate of population growth at $t=19$ minutes is

5. Find the following derivatives:

$$
\begin{aligned}
& \frac{d}{d x}\left(2 x^{3}+1\right)=\square \quad \frac{d}{d x} \sqrt{3+x^{2}}=\square \\
& \frac{d}{d x}\left[(x+1)^{1 / 2}(x+3)^{1 / 3}\right]=\square
\end{aligned}
$$

6. The quotient rule is
(A) $\left(\frac{f}{g}\right)^{\prime}(x)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g(x)^{2}}$
(B) $\left(\frac{f}{g}\right)^{\prime}(x)=\frac{g^{\prime}(x) f(x)-g(x) f^{\prime}(x)}{g(x)^{2}}$
(C) $\left(\frac{f}{g}\right)^{\prime}(x)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{f(x)^{2}}$
(D) $\left(\frac{f}{g}\right)^{\prime}(x)=\frac{g^{\prime}(x) f(x)-g(x) f^{\prime}(x)}{f(x)^{2}}$
(E) none of these.

Math 176 Midterm Practice Version A

7. For the demand equation

$$
x=-\frac{5}{4} p+20
$$

compute the elasticity of demand $E(p)$ and determine whether the demand is elastic, unitary or inelastic when $p=10$.
$E(p)=\square \quad E(10)=\square$
The demand is
(A) elastic
(B) unitary
(C) inelastic
8. List all critical values for the function $f(x)=x^{2} /(x+1)$.

$$
x=\square
$$

9. Consider the function $y=f(x)$ given by the following graph:

(True/False) The function has a relative maximum at $x=0$.
(True/False) The function has an inflection point at $x=2$.
(True/False) The function is concave down on the interval $[-2,1]$.
10. Find the absolute maximum and absolute minimum values of $g(x)=x^{2}+2 x+3$ on the interval $[-3,5]$.
absolute maximum $=\square \quad$ absolute minimum $=\square$

Math 176 Midterm Practice Version A

11. Use the limit definition of derivative

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

to explain why the derivative of $f(x)=\sqrt{x}$ is $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$.
12. Explain the reciprocal rule $(1 / g)^{\prime}(x)=-g^{\prime}(x) / g(x)^{2}$ using limits.
13. Find the equation of the line tangent to $y^{3}-y=x^{2}+x y-1$ at the point $(1, \sqrt{2})$.

