Math 181 Honors Calculus I — Fall 2008

Fundamental concepts of analytic geometry and calculus; functions, graphs, limits, derivatives and integrals. Honors Calculus will emphasize the mathematical proofs that form the logical foundations of calculus while fully covering the practical techniques from the non-honors course needed for science and engineering. Students planning to take Math 182 Honors in Spring are strongly recommended to take Math 181 Honors in Fall.

Course Information

Section H06, 01:00–01:50pm, MTWRF, AB635. Contact honors program at 784–1455 for call number.

Instructor

Dr Eric Olson Ansari Business Building AB614 ejolson at unr.edu

Office Hours

MTW 2–3pm and by appointment. If I'm in my office and you don't have an appointment, I can almost always take 15 minutes to answer a question.

Text

Single Variable Calculus: Concepts & Contexts, Third Edition, James Stewart, Thomson Brook/Cole, 2005.

Supplemental Text

Calculus: Volume I, Second Edition, Tom M. Apostol, John Wiley & Sons, 1967.

Topics Covered

Chapters 1–5 from the main text and/or chapters 1–5 from the supplemental text. This includes historical background, set theory, axioms of the real numbers, mathematical induction, integral calculus, applications of integration, continuous functions, differential calculus, applications of differential calculus and the fundamental theorem.

Academic Conduct

Bring identification to all exams. Work independently on all exams and quizzes. Behaviors inappropriate to test taking may disturb other students and will be considered cheating. Don't talk or pass notes with other students during an exam. Homework may be discussed freely. Homework turned in for grading must be written by each individual student. If you are unclear as to what constitutes cheating, please consult with me.

Equal Opportunity Statement

The Mathematics and Statistics Department supports providing equal access for students with disabilities. I am available to discuss appropriate academic accommodations that students may require. Please meet with me at your earliest convenience. For more information see http://www.unr.edu/stsv/slservices/drc/ or contact the Disability Resource Center at Thompson Building, Suite 101, Phone (775) 784–6000.

Grading

12	Quizzes (drop 2)	10	points	each
2	Exams	80	points	each
1	Final Exam	100	points	
8	Homework Assignments	5	points	each
		400	points	total

Calendar

#	Date	Apostle	Stewart	Topic
1 2 3 4 5	Aug 25 Aug 26 Aug 27 Aug 28 Aug 29	1.1-1.3 1.5-1.6 2.1-2.4 3.1-3.2.3.4	Preview	Introduction Archimedes' Method Set Theory Quiz Field and Order Axioms
6 7 8 9	Sep 1 Sep 2 Sep 3 Sep 4 Sep 5	3.6-3.8 3.9-3.11 4.1-4.2		Holiday (Labor Day) Integers, Rational and Real Least Upper Bound Quiz Induction
10 11 12 13 14	Sep 8 Sep 9 Sep 10 Sep 11 Sep 12	4.6, 4.8 1.1-1.2,1.4 1.6,1.8-1.10	1.1 5.1-5.2	Summation Notation Recitation Functions Quiz Area and Step Functions
15 16 17 18 19	Sep 15 Sep 16 Sep 17 Sep 18 Sep 19	1.12-1.14 1.16-1.19 1.20-1.22	5.3 6.1 2.9	Integral for Step Functions recitation Integral of General Functions Quiz Monotone Functions
12 12 13 13 14	Sep 22 Sep 23 Sep 24 Sep 25 Sep 26	1.23-1.25 1.27 2.1-2.3	3.1 6.1	Integrating x^p recitation Properties of Integral Quiz Area Between Two Graphs
15 15 16 16 17	Sep 29 Sep 30 Oct 1 Oct 2 Oct 3	2.5-2.7 2.9-2.10 2.12	1.2,C 1.7,B,H 6.2	Sine and Cosine recitation Polar Coordinates Quiz Calculation of Volume
18 19 20 21 22	Oct 6 Oct 7 Oct 8 Oct 9 Oct 10	2.14 2.16 2.18	6.5 6.4 4.9	Concept of Work Average Value review Exam I Indefinite Integrals
23 24 25 26 27	Oct 13 Oct 14 Oct 15 Oct 16 Oct 17	3.1-3.5 3.7 3.9-3.10	2.2-2.3 1.3 2.4	Limits and Continuity recitation Composition of Functions Quiz Intermediate Value Theorem

Oct 17			Final Date to Drop a Class
28 Oct 20 29 Oct 21 30 Oct 22	3.12-3.14 3.16-3.19	1.6	Inverse Functions recitation Extreme Value Theorem
31 Uct 23 32 Oct 24	4.1-4.5	2.5-2.8	Quiz The Derivative
33 Oct 27 34 Oct 28 35 Oct 29 36 Oct 30 Oct 31	4.7-4.9 4.10-4.12	2.1,2.6 3.5	Geometric Interpretation recitation The Chain Rule Quiz Holiday (Nevada Day)
37Nov338Nov439Nov540Nov641Nov7	4.13-4.15 4.16-4.19 4.20-4.21	4.2 4.3-4.4 4.6-4.7	Finding Maximum Values recitation Curve Sketching Quiz More on Maximum Values
 41 Nov 10 Nov 11 42 Nov 12 43 Nov 13 44 Nov 14 	5.1-5.5 5.6-5.8 5.9-5.10	5.3-5.4 5.5 5.6	Fundamental Theorem of Calculus Holiday (Veteran's Day) Integration by Substitution Quiz Integration by Parts
 45 Nov 17 46 Nov 18 47 Nov 19 48 Nov 20 49 Nov 21 	6.1-6.4 6.5-6.7 6.8	3.7	Logarithms Derivative of Logarithm review Exam II Logarithmic Differentiation
50 Nov 24 51 Nov 25 52 Nov 26 Nov 27 Nov 28	6.10 6.12-6.16	3.8,5.9 1.5,3.1	Approximation of Logarithms recitation The Exponential Function Holiday (Thanksgiving Day) Holiday (Family Day)
53 Dec 1 54 Dec 2 55 Dec 3 56 Dec 4 57 Dec 5	6.18 6.20-6.21 6.23-6.24	3.6 5.7,G	The Hyperbolic Functions recitation Derivatives of Inverse Functions Quiz Integration by Partial Fractions
58 Dec 8 59 Dec 9 Dec 10			review review Holiday (Prep Day)

Final Exam

Thursday, Dec 11 from 12 noon to 2pm in AB635.