Math 181 Honors Exam 1 Version A

1. Convert the repeating decimal $3 . \overline{14}$ to a fraction.
2. Solve the inequality $x^{2}>4$.
3. Let $w(x)=f(x) g(x)$ where f and g are functions with derivatives f^{\prime} and g^{\prime}. Suppose $f(1)=2, g(1)=2, f^{\prime}(1)=3$ and $g^{\prime}(1)=4$. What is the value of $w^{\prime}(1) ?$
4. Supppose $y=u^{2}, u=2 w+1$ and $w=x^{2}$. Find $\frac{d y}{d x}$.

Math 181 Honors Exam 1 Version A

5. Find all values of x such that the inequality $|x-5|<1$ holds. Express your answer as an interval.
6. Use the $\delta-\epsilon$ definition of limit to show that $\lim _{x \rightarrow 5} \frac{1}{x}=\frac{1}{5}$.
7. Derive the slope of the line tangent to $f(x)=\sqrt{x}$ at the point $(x, f(x))$ where $x>0$ using the method of approxation by secants.

Math 181 Honors Exam 1 Version A

8. Use the $\delta-\epsilon$ definition of limit to show that

$$
\lim _{x \rightarrow a} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow a} g(x)=M
$$

implies

$$
\lim _{x \rightarrow a}(f(x) g(x))=L M
$$

9. Use the limits

$$
\lim _{h \rightarrow 0} \frac{\sin h}{h}=1 \quad \text { and } \quad \lim _{h \rightarrow 0} \frac{1-\cos h}{h}=0
$$

along with the angle addition formula for sine to show

$$
\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h}=\cos x
$$

Math 181 Honors Exam 1 Version A

10. Use the derivative rules to compute the following derivatives.
(i) $\frac{d}{d x}\left(x^{200}+4 x^{2}+1\right)$
(ii) $\frac{d}{d x}((3 \sin x)+(4 \cos x))$
(iii) $\frac{d}{d x}\left(\frac{x+1}{x^{2}+1}\right)$
(iv) $\frac{d}{d x} \sqrt{x^{2}+3 x+4}$

Math 181 Honors Exam 1 Version A

11. Do only one of the following:
(i) Let $w(x)=f(x) / g(x)$ where $g(x) \neq 0$. Assuming f and g are continuous functions with derivatives f^{\prime} and g^{\prime}, show $w^{\prime}(x)=\left(f^{\prime}(x) g(x)-f(x) g^{\prime}(x)\right) /(g(x))^{2}$ by using the limit laws to compute

$$
\lim _{h \rightarrow 0} \frac{w(x+h)-w(x)}{h}
$$

(ii) Prove the angle addition formula $\sin (x+y)=(\sin x)(\cos y)+(\cos x)(\sin y)$ using the figure

Math 181 Honors Exam 1 Version A
12. [Extra Credit] Let $w(x)=f(g(x))$ where f and g are continuous functions with derivatives f^{\prime} and g^{\prime}. Further assume that $g(x)=g(x+h)$ only when $h=0$. Use limits to prove the chain rule $w^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$.

