Math 181 Honors Quiz 4 Version A

1. Use the $\delta-\epsilon$ definition of limit to show that $\lim _{x \rightarrow 1}\left(x^{2}+13 x\right)=14$.
2. Let $w(x)=f(x) g(x)$. Assuming f and g are continuous functions with derivatives f^{\prime} and g^{\prime}, show $w^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$ by using the limit laws to compute

$$
\lim _{h \rightarrow 0} \frac{w(x+h)-w(x)}{h}
$$

Math 181 Honors Quiz 4 Version A

3. Use the derivative rules

$$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}, \quad \frac{d}{d x}\left(x^{-n}\right)=-n x^{-n-1} \quad \text { and } \quad \frac{d}{d x}\left(x^{1 / n}\right)=\frac{1}{n} x^{1 / n-1}
$$

for $n=1,2,3, \ldots$ along with the general derivative rules

$$
\frac{d}{d x}(c f(x))=c f^{\prime}(x) \quad \text { and } \quad \frac{d}{d x}(f(x) \pm g(x))=f^{\prime}(x) \pm g^{\prime}(x)
$$

to compute the following derivatives.
(i) $\frac{d}{d x}\left(x^{4}\right)$
(ii) $\frac{d}{d x}\left(3 x^{5}+x\right)$
(iii) $\frac{d}{d x}\left(x^{2}+\frac{5}{x^{2}}\right)$
(iv) $\frac{d}{d x}(3 \sqrt{x}+\sqrt[5]{x})$

