Topics

- 1. Field and Order Axioms
- **2.** Solving Inequalities
- 3. Set Notation and Operations on Sets
- 4. Completing the Square
- 5. Graphing and Transformations of Graphs
- 6. Finding Domains of Real Valued Functions
- 7. Proof of Pythagorean Theorem
- 8. Limit of a Repeating Decimal
- 9. Limit of Continued Fractions
- 10. Mathematical Definition of Limit
- 11. Verifying Limits Using the Definition
- 12. Definition of Continuity
- **13.** Limit Laws
- 14. Verifying Continuity Using the Definition

Example Problems

- 1. Field and Order Axioms
 - (i) State the Field Axioms.
 - (ii) State the Order Axioms.
 - (iii) Use the Order Axioms
 - (POS1) If a, b are positive, so is ab and a + b.
 - (POS2) If a is a number, then either a is positive, or a = 0, or -a is positive, and these possibilities are mutually exclusive.

to show that a < b and b < c implies a < c.

2. Solving Inequalities

- (i) Find all $x \in \mathbf{R}$ such that (x-2)(x+4)(x-4) > 0.
- (ii) Find all $x \in \mathbf{R}$ such that $x^2 3x + 2 < 0$.
- (iii) Find all $x \in \mathbf{R}$ such that $\left|x + \frac{1}{x}\right| \ge 6$.
- (iv) Find all $x \in \mathbf{R}$ such that $\left|\frac{1}{x-5}\right| \ge \frac{2}{x-7}$.
- 3. Set Notation and Operations on Sets
 - (i) Find $A \cup B$, $A \cap B$ and $A \setminus B$ where $A = \{1, 2, 3\}$ and $B = \{2, 4, 8\}$.
 - (ii) Find $A \cup B$, $A \cap B$ and $A \setminus B$ where A = [1, 4] and B = [0, 3].
- 4. Completing the Square
 - (i) Find the vertex of the parabola $y = x^2 + 3x 8$.

Math 181 Honors Exam 1 Review Version A

- (ii) Find the center of the hyperbola $x^2 + 3x 2y^2 + 7y = 100$.
- **5.** Graphing and Transformations of Graphs
 - (i) Sketch the graph of y = |x 3| + 1.
 - (ii) Sketch the graphs of y = f(x+2) and y = -f(x) + 3 where y = f(x) is given by the graph

6. Finding Domains of Real Valued Functions

(i) Find the domain of
$$f(x) = \frac{1}{\sqrt{x^2 - 9}}$$

(ii) Find the domain of
$$g(x) = \frac{1}{x^2 + 9}$$
.

(iii) Find the domain of
$$h(x) = \frac{1}{|x| - 3}$$
.

- 7. Proof of Pythagorean Theorem
 - (i) State the hypothesis and conclusion and then prove the Pythagorean theorem.
- 8. Limit of a Repeating Decimal
 - (i) Write the repeating decimal $0.0\overline{1}$ as a fraction.
 - (ii) Write the repeating decimal $0.0\overline{10}$ as a fraction.
 - (iii) Write the repeating decimal $0.0\overline{101}$ as a fraction.
- 9. Limit of Continued Fractions
 - (i) Write the continued fraction $[1,\overline{3}]$ in the form $\frac{a+\sqrt{b}}{c}$.
 - (ii) Write the continued fraction $[\overline{2,1}]$ in the form $\frac{a+\sqrt{b}}{c}$.

Math 181 Honors Exam 1 Review Version A

10. Mathematical Definition of Limit

(i) State the meaning of
$$\lim_{x \to a} f(x) = L$$
 in terms of ϵ and δ .

- 11. Verifying Limits Using the Definition
 - (i) Use the ϵ - δ definition to verify $\lim_{x \to 2} 3x = 6$.
 - (ii) Use the ϵ - δ definition to verify $\lim_{x\to 9} \frac{1}{\sqrt{x}} = \frac{1}{3}$.
 - (iii) Use the ϵ - δ definition to verify $\lim_{x \to 3} \frac{1}{2x-5} = 1$.
 - (iv) Use the ϵ - δ definition to verify $\lim_{x \to 4} x \sqrt{x} = 8$.

12. Definition of Continuity

(i) State what it means for a function f to be continuous at a in terms of limits.

13. Limit Laws

- (i) The 6 limit laws are
 - $\begin{array}{ll} (0) & \lim_{x \to a} c = c \\ (1) & \lim_{x \to a} cf(x) = c \lim_{x \to a} f(x) \\ (2) & \lim_{x \to a} \left(f(x) + g(x) \right) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) \\ (3) & \lim_{x \to a} \left(f(x)g(x) \right) = \lim_{x \to a} f(x) \lim_{x \to a} g(x) \\ (4) & \lim_{x \to a} \frac{1}{f(x)} = \frac{1}{\lim_{x \to a} f(x)} \text{ provided } \lim_{x \to a} f(x) \neq 0 \\ (5) & \lim_{x \to a} f\left(g(x)\right) = f\left(\lim_{x \to a} g(x)\right) \text{ if } f \text{ is continuous at } \lim_{x \to a} g(x). \\ \text{Use the } \epsilon \delta \text{ definition to verify each limit law.} \end{array}$
- (ii) Explain how limit law (1) is a special case of limit law (3).
- (iii) Explain how limit law (4) is a special case of limit law (5).
- (iv) Use the limit laws to show

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

provided $\lim_{x \to a} g(x) \neq 0$.

14. Verifying Continuity Using the Definition

- (i) Use the limit laws and the fact that $\lim_{x \to 2} x = 2$ to show that f(x) = 1/x is continuous at the point x = 2.
- (ii) Use the limit laws and the fact that $\lim_{x \to a} x = a$ to show that $g(x) = x^2$ is continuous at the point x = a.
- (iii) Use geometry to show that $h(x) = \sin x$ is continuous at x = 0.