1. The Order Axioms are

- (POS1) If a, b are positive, so is ab and a + b.
- (POS2) If a is a number, then either a is positive, or a = 0, or -a is positive, and these possibilities are mutually exclusive.

Use the order axioms to show to show that a > b and b > c implies a > c.

2. Find all
$$x \in \mathbf{R}$$
 such that $\frac{1}{x-2} > x$.

3. Write the repeating decimal $1.3\overline{7}$ as a fraction.

4. Suppose A = [-1,7] and B = (2,3].
(i) Find A ∪ B.

(ii) Find $A \cap B$.

(iii) Find $A \setminus B$.

5. Find the vertex of the parabola $y = 2x^2 + 5x - 1$.

6. Sketch the graph of y = |x+1| - 3.

7. Find the domain of the real valued function given by $f(x) = \sqrt{|x+1| - 3}$.

8. State the hypothesis and conclusion and then prove the Pythagorean theorem.

9. Write the continued fraction $[1,\overline{4}]$ in the form $\frac{a+\sqrt{b}}{c}$.

10. State the meaning of $\lim_{x \to a} f(x) = L$ in terms of ϵ and δ .

11. Use the ϵ - δ definition to verify $\lim_{x \to 2} x^2 = 4$.

12. The 6 limit laws are

(0)
$$\lim_{x \to a} c = c$$

(1)
$$\lim_{x \to a} cf(x) = c \lim_{x \to a} f(x)$$

(2)
$$\lim_{x \to a} \left(f(x) + g(x) \right) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

(3)
$$\lim_{x \to a} \left(f(x)g(x) \right) = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$$

(4)
$$\lim_{x \to a} \frac{1}{f(x)} = \frac{1}{\lim_{x \to a} f(x)} \text{ provided } \lim_{x \to a} f(x) \neq 0$$

(5)
$$\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right) \text{ if } f \text{ is continuous at } \lim_{x \to a} g(x).$$

(i) Use the ϵ - δ definition to verify limit law 2.

(ii) Use the limit laws and the fact that $\lim_{x \to 2} x = 2$ to show $f(x) = \frac{1}{x+1}$ is continuous at the point x = 2.

13. [Extra Credit] Use geometry to show $\lim_{x\to 0} \sin x = 0$