Math 181 Honors Final Review Version A

1. Convert the repeating decimals to fractions:
(i) $3.4 \overline{2}$
(ii) $0 . \overline{27}$
2. Solve the inequality $\frac{x^{2}-5}{x-1} \geq 0$.
3. The Order Axioms are
(POS1) If a, b are positive, so is $a b$ and $a+b$.
(POS2) If a is a number, then either a is positive, or $a=0$, or $-a$ is positive, and these possibilities are mutually exclusive.
Use the order axioms to show to show that $a>b$ and $b>c$ implies $a>c$.

Math 181 Honors Final Review Version A

4. Suppose $A=[0,3]$ and $B=[2,7)$.
(i) Find $A \cup B$.
(ii) Find $A \cap B$.
(iii) Find $A \backslash B$.
5. Find the vertex of the parabola $y=3 x^{2}+9 x+2$.

Math 181 Honors Final Review Version A
6. Sketch the graph of $y=|x-2|-5$.
7. Find the domain of the real valued function given by $f(x)=\sqrt{|x-2|-5}$.
8. State what it means for $f(x)$ to be continuous at the point $x=a$.

Math 181 Honors Final Review Version A
9. Write the continued fraction $[2, \overline{3}]$ in the form $\frac{a+\sqrt{b}}{c}$.
10. State the meaning of $\lim _{x \rightarrow a} f(x)=L$ in terms of ϵ and δ.
11. Use the $\epsilon-\delta$ definition to verify $\lim _{x \rightarrow 1} \frac{1}{x}=1$.

Math 181 Honors Final Review Version A

12. The 6 limit laws are
(0) $\lim _{x \rightarrow a} c=c$
(1) $\lim _{x \rightarrow a} c f(x)=c \lim _{x \rightarrow a} f(x)$
(2) $\lim _{x \rightarrow a}(f(x)+g(x))=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
(3) $\lim _{x \rightarrow a}(f(x) g(x))=\lim _{x \rightarrow a} f(x) \lim _{x \rightarrow a} g(x)$
(4) $\lim _{x \rightarrow a} \frac{1}{f(x)}=\frac{1}{\lim _{x \rightarrow a} f(x)}$ provided $\lim _{x \rightarrow a} f(x) \neq 0$
(5) $\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)$ if f is continuous at $\lim _{x \rightarrow a} g(x)$.
(i) Use the $\epsilon-\delta$ definition to verify limit law 3 .

Math 181 Honors Final Review Version A
13. Suppose $0<\theta<\pi / 2$. Use geometry to show $\cos \theta \leq \frac{\sin \theta}{\theta} \leq \frac{1}{\cos \theta}$.
14. Suppose $x>0$ and $h>0$. Use geometry to show $\frac{h}{x+h} \leq \ln (x+h)-\ln x \leq \frac{h}{x}$.

Math 181 Honors Final Review Version A

15. Use the limit laws to find the following limits.
(i) $\lim _{x \rightarrow \infty} x^{2}-x$
(ii) $\lim _{x \rightarrow-1} \frac{x^{2}-4}{x^{2}+1}$
(iii) $\lim _{x \rightarrow 2^{+}} \frac{x-2}{x^{2}-x-2}$
(iv) $\lim _{x \rightarrow 2^{+}} \frac{x}{2-x}$

Math 181 Honors Final Review Version A

16. Fill in the derivatives in the following table:

$$
\begin{aligned}
& \frac{d}{d x} x^{r}=\square \\
& \frac{d}{d x} \frac{1}{x^{r}}=\square \\
& \frac{d}{d x} \sin x=\square \\
& \frac{d}{d x} \cos x=\square \\
& \frac{d}{d x} \arcsin x=\square \\
& \frac{d}{d x} \tan x=\square \\
& \frac{d}{d x} \arccos x \\
& \hline
\end{aligned}
$$

17. State the definition of derivative in terms of limits.
18. Suppose $f(x)=3 x^{2}$. Use the limit laws to verify $f^{\prime}(x)=6 x$.

Math 181 Honors Final Review Version A

19. Use Calculus to find the following derivatives.
(i) $\frac{d}{d x}\left(3 x^{2}-x+16\right)$
(ii) $\frac{d}{d x} \frac{x}{3+\arctan x}$
(iii) $\frac{d}{d x}(x \cos x)$
(iv) $\frac{d}{d x} \ln \left(\frac{1}{1+x^{2}}\right)$

Math 181 Honors Final Review Version A

20. Consider the function $f(x)=x^{2} e^{-x}$ graphed below

(i) Find the critical points of $f(x)$ on the interval $[-0.5,4]$.
(ii) Find the maximum value of $f(x)$ on the interval $[-0.5,4]$.
(iii) Find the minimum value of $f(x)$ on the interval $[-0.5,4]$.

Math 181 Honors Final Review Version A

21. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a continuous function and define

$$
g(x)=\int_{0}^{x} f(t) d t
$$

Use geometry and the $\delta-\epsilon$ definition of limit to show that $g^{\prime}(x)=f(x)$.

