1. Find the fraction

$$
\frac{p}{q}
$$

that is the limit of the repeating decimal

$$
5 . \overline{2}
$$

2. Find the fraction

$$
\frac{p}{q}
$$

that is the limit of the repeating decimal

$$
1.0 \overline{36}
$$

3. Find a number in the form

$$
\frac{a+\sqrt{b}}{c}
$$

which is the limit of the continued fraction

$$
[1,2]
$$

4. Find a number in the form

$$
\frac{a+\sqrt{b}}{c}
$$

which is the limit of the continued fraction

$$
[1,3]
$$

5. Find the number

$$
L
$$

such that

$$
\lim _{x \rightarrow 2} x^{2}=L
$$

6. Find the number

$$
L
$$

such that

$$
\lim _{x \rightarrow 1} \frac{x^{2}+2 x+3}{x+2}=L
$$

7. Find the extended real number

L

which could be finite, ∞ or $-\infty$ such that

$$
\lim _{x \rightarrow \infty}\left(1-x^{2}\right)=L
$$

8. Find the extended real number

L

which could be finite, ∞ or $-\infty$ such that

$$
\lim _{x \rightarrow \infty} \frac{1}{1-x^{2}}=L
$$

9. Find the number

$$
L
$$

which is the limit of the expression

$$
\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}
$$

10. Find the extended real number

L

which could be finite, ∞ or $-\infty$ such that

$$
\lim _{x \rightarrow \infty} \frac{x^{2}+3 x-5}{2 x^{2}-5}=L
$$

11. Find the extended real number

L

which could be finite, ∞ or $-\infty$ such that

$$
\lim _{x \rightarrow-\infty} \frac{x^{3}+125}{x+5}=L
$$

12. Find the extended real number

L

which could be finite, ∞ or $-\infty$ such that

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=L
$$

13. Find the extended real number

$$
L
$$

which could be finite, ∞ or $-\infty$ such that

$$
\lim _{x \rightarrow-1} \frac{1}{x^{2}+2 x+1}=L
$$

