1. State the definition of $\lim_{x\to a} f(x) = L$ in terms of ϵ and δ .

2. State the definition of $\lim_{x\to\infty} f(x) = L$ in terms of ϵ and N.

3. State the definition of $\lim_{x\to a} f(x) = -\infty$ in terms of M and δ .

4. State the definition of $\lim_{x\to-\infty} f(x) = \infty$ in terms of M and N.

5. Let $f(x) = \sqrt{x}$. Use the limit definition of derivative to show that $f'(x) = \frac{1}{2\sqrt{x}}$.

6. Suppose w(x) = f(x) + g(x) where f and g are continuous and differentiable functions. Use the limit definition of derivative to show that w'(x) = f'(x) + g'(x).