Math 181 Midterm Version A

1. Precisely define $\lim _{x \rightarrow a^{+}} f(x)=L$ using inequalities in terms of δ and ϵ.
2. Find the following limits:
(i) $\lim _{x \rightarrow 0} \cos x$
(ii) $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}$
(iii) $\lim _{x \rightarrow \infty} \frac{x^{2}+x-3}{2 x^{2}-4}$

Math 181 Midterm Version A

3. Define the derivative $f^{\prime}(x)$ of a function $f(x)$ using limits.
4. Use the limit definition to explain why the derivative of $f(x)=1 / x$ is $f^{\prime}(x)=-1 / x^{2}$.
5. Answer the following true/false questions:
(i) If f is differentiable at a, then f is continuous at a.
(A) True
(B) False
(ii) e is the number such that $\lim _{h \rightarrow 0} \frac{e^{h}+1}{h}=1$.
(A) True
(B) False

Math 181 Midterm Version A

6. State the following derivative rules from memory:

Math 181 Midterm Version A

7. Use the rules of calculus to compute the following derivatives:
(i) $\frac{d}{d x}(x \sin x)$
(ii) $\frac{d}{d x} \arctan \left(1+x^{2}\right)$
(iii) $\frac{d}{d x}\left(\frac{x^{3}-5}{x^{2}+4}\right)$
(iv) $\frac{d}{d x} x^{x}$

Math 181 Midterm Version A

8. Consider the curve defined by the equation $x^{3}+y^{3}=6 x y$.
(i) Use implicit differentiation to find y^{\prime} in terms of x and y.
(ii) Find equation of the line tangent to this curve at the point $(3,3)$.

(iii) At what point in the first quadrant is the tangent line horizontal?

Math 181 Midterm Version A

9. Two carts, A and B, are connected by a rope 39 ft long that passes over a pully P. The point Q is on the floor 12 ft directly beneath P and between the carts. Cart A is being pulled away from Q at a speed of $2 \mathrm{ft} / \mathrm{s}$. How fast is cart B moving toward Q at the instant when cart A is 5 ft from Q ?

