Math 182 Honors Quiz 13 Version A

1. State Taylor's Theorem with the integral form of the remainder term.
2. State the ratio test for determining whether an infinite series converges.
3. Prove the integration by parts formula: If f^{\prime} and g^{\prime} are continuous then

$$
\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int f^{\prime}(x) g(x) d x
$$

Math 182 Honors Quiz 13 Version A
4. Solve the following integration problems:
(i) $\int_{0}^{4} \sqrt{1+2 x} d x$
(ii) $\int_{0}^{\pi / 6} \sin ^{2} x d x$
(iii) $\int x \arctan \left(1+x^{2}\right) d x$
(iv) $\int \frac{x^{3}}{x^{2}-1} d x$

Math 182 Honors Quiz 13 Version A
5. Find the Taylor series with remainder for $f(x)=\ln \left(1+x^{2}\right)$ expanded about $a=0$.
6. Find $\lim _{x \rightarrow 0} \frac{x e^{-x^{2}}-\sin x}{x^{3}}$

Math 182 Honors Quiz 13 Version A
7. Determine whether the following infinite series converge and explain your answer.
(i) $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$
(ii) $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{(n+1)^{3 / 2}}$
(iii) $\sum_{n=237}^{\infty} \frac{n^{2}-1}{n!}$
(iv) $\sum_{n=13}^{\infty} \frac{1}{(\ln n)^{n}}$

Math 182 Honors Quiz 13 Version A
8. Find the volume generated by rotating the region bounded by $x=1, y=1$ and $y=5-x^{2}$ about the x-axis.
9. Find the length of the arc given be $y=\frac{1}{8} x^{2}-\ln x$ between $x=1$ and $x=2$.

