> restart;
> \# Trapeziod and Simpson's method for numerical integration.
> with(Student[Ca1cu1us1]);
[AntiderivativePlot, AntiderivativeTutor, ApproximateInt, ApproximateIntTutor, ArcLength, ArcLengthTutor, Asymptotes, Clear, CriticalPoints, CurveAnalysisTutor, DerivativePlot, DerivativeTutor, DiffTutor, ExtremePoints, FunctionAverage, FunctionAverageTutor, FunctionChart, FunctionPlot, GetMessage, GetNumProblems, GetProblem, Hint, InflectionPoints, IntTutor, Integrand, InversePlot, InverseTutor, LimitTutor, MeanValueTheorem, MeanValueTheoremTutor, NewtonQuotient, NewtonsMethod, NewtonsMethodTutor, PointInterpolation, RiemannSum, RollesTheorem, Roots, Rule, Show, ShowIncomplete, ShowSteps, Summand, SurfaceOfRevolution, SurfaceOfRevolutionTutor, Tangent, TangentSecantTutor, TangentTutor, TaylorApproximation, TaylorApproximationTutor, Understand, Undo, VolumeOfRevolution, VolumeOfRevolutionTutor, WhatProblem]
> ApproximateInt $(x /(1+x \wedge 4), x=0 . .2$, method=trapezoid, partition=8, output=p1ot)

> An Approximation of the Integral of $f(x)=x /\left(1+x^{\wedge} 4\right)$
> on the Interval $[0,2]$
> Using the Trapezoid Rule
> Approximate Value: . 6629088318

|> ApproximateInt(x/(1+x^4),x=0..2,method=simpson, partition=4,output=p1ot);

An Approximation of the Integral of

$$
f(x)=x /\left(1+x^{\wedge} 4\right)
$$

on the Interval [0, 2]
Using Simpson's Rule
Approximate Value: . 6629088318

