```
> restart;
> with(Student[Ca1cu1us1]);
[AntiderivativePlot, AntiderivativeTutor, ApproximateInt, ApproximateIntTutor, ArcLength, ArcLengthTutor, Asymptotes, Clear, CriticalPoints, CurveAnalysisTutor, DerivativePlot, DerivativeTutor, DiffTutor, ExtremePoints, FunctionAverage, FunctionAverageTutor, FunctionChart, FunctionPlot, GetMessage, GetNumProblems, GetProblem, Hint, InflectionPoints, IntTutor, Integrand, InversePlot, InverseTutor, LimitTutor, MeanValueTheorem, MeanValueTheoremTutor, NewtonQuotient, NewtonsMethod, NewtonsMethodTutor, PointInterpolation, RiemannSum, RollesTheorem, Roots, Rule, Show, ShowIncomplete, ShowSteps, Summand, SurfaceOfRevolution, SurfaceOfRevolutionTutor, Tangent, TangentSecantTutor, TangentTutor, TaylorApproximation, TaylorApproximationTutor, Understand, Undo, VolumeOfRevolution, VolumeOfRevolutionTutor, WhatProblem]
> ApproximateInt(sqrt(1-x^2), \(x=-1 / 2 . .1 / 2\),
method \(=\) trapezoid, partition \(=36\), output \(=\) plot);
An Approximation of the Integral of
\(f(x)=\left(1-x^{\wedge} 2\right)^{\wedge}(1 / 2)\)
on the Interval \([-1 / 2,1 / 2]\)
Using the Trapezoid Rule
Approximate Value: . 9566114775
```


Area: . 9565372349

> $\mathrm{T}:=$ ApproximateInt(sqrt(1-x^2), $x=-.5$.. . 5 , method = trapezoid, partition = 36);
|> $A:=\operatorname{int}(\operatorname{sqrt}(1-x \wedge 2), x=-1 / 2 . .1 / 2)$;

$$
A:=\frac{1}{4} \sqrt{3}+\frac{1}{6} \pi
$$

> evalf(abs (T-A)); 0.0000742429
$[>10.0 \wedge(-4)$;
0.0001000000000

