1. Convert the repeating decimal $2.\overline{63}$ to a fraction.

2. Find the following derivatives:

(i)
$$\frac{d}{dx}e^{\cosh x}$$

(ii)
$$\frac{d}{dx}\ln\left(1+|x|\right)$$

(iii)
$$\frac{d}{dx}(\arcsin x)^{2x}$$

3. Solve the following indefinite integrals:

(i)
$$\int 2x \cos^3(1+x^2) \, dx$$

(ii)
$$\int \frac{1}{x^2 - 5x + 13} \, dx$$

(iii)
$$\int \frac{x}{(2x-1)^2} dx$$

4. Rewrite the integral
$$\int_{1}^{2} \sqrt{x^{2} - 1} \, dx$$
 in terms of u where $u = x^{2}$.

5. Find
$$\int_{0}^{\pi/6} x \sin(2x) \, dx$$

6. Find
$$\int_0^\infty e^{-|1-x|} dx$$

7. Find the volume generated by revolving the shaded region about the x-axis.

8. Find the length of the curve given by $y = (x/2)^{2/3}$ between x = 0 and x = 2.

9. Consider the following theorem from your book:

Theorem 12. Let $\sum a_n$ be a series with positive terms and suppose that

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \rho.$$

Then (a) the series converges if $\rho < 1$, (b) the series diverges if $\rho > 1$ or ρ is infinite and (c) the test is inconclusive if $\rho = 1$.

- (i) What is the name of this theorem?
- (ii) Establish part (a) of this theorem for the case where $\rho < 1$.

10. Determine whether the following series converge or diverge and explain your answer.

(i)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\arctan n}$$

(ii)
$$\sum_{n=6}^{\infty} \frac{1}{n(\ln n)^2}$$

(iii)
$$\sum_{n=1}^{\infty} \frac{n+1}{n!}$$

11. State the Taylor series expanded about a = 0 along with the radius of convergence of the series for the following functions.

(i)
$$\frac{1}{1-x}$$

(ii) $\sin x$

(iii) $\arctan x$

12. Find
$$\lim_{x \to 0} \frac{xe^{-x^2} - \sin x}{x^3}$$