Math 182 Final Exam Version A

1. Convert the repeating decimal $2 . \overline{63}$ to a fraction.
2. Find the following derivatives:
(i) $\frac{d}{d x} e^{\cosh x}$
(ii) $\frac{d}{d x} \ln (1+|x|)$
(iii) $\frac{d}{d x}(\arcsin x)^{2 x}$

Math 182 Final Exam Version A
3. Solve the following indefinite integrals:
(i) $\int 2 x \cos ^{3}\left(1+x^{2}\right) d x$
(ii) $\int \frac{1}{x^{2}-5 x+13} d x$
(iii) $\int \frac{x}{(2 x-1)^{2}} d x$

Math 182 Final Exam Version A
4. Rewrite the integral $\int_{1}^{2} \sqrt{x^{2}-1} d x$ in terms of u where $u=x^{2}$.
5. Find $\int_{0}^{\pi / 6} x \sin (2 x) d x$
6. Find $\int_{0}^{\infty} e^{-|1-x|} d x$

Math 182 Final Exam Version A
7. Find the volume generated by revolving the shaded region about the x-axis.

8. Find the length of the curve given by $y=(x / 2)^{2 / 3}$ between $x=0$ and $x=2$.

Math 182 Final Exam Version A

9. Consider the following theorem from your book:

Theorem 12. Let $\sum a_{n}$ be a series with positive terms and suppose that

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho
$$

Then (a) the series converges if $\rho<1$, (b) the series diverges if $\rho>1$ or ρ is infinite and (c) the test is inconclusive if $\rho=1$.
(i) What is the name of this theorem?
(ii) Establish part (a) of this theorem for the case where $\rho<1$.

Math 182 Final Exam Version A
10. Determine whether the following series converge or diverge and explain your answer.
(i) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\arctan n}$
(ii) $\sum_{n=6}^{\infty} \frac{1}{n(\ln n)^{2}}$
(iii) $\sum_{n=1}^{\infty} \frac{n+1}{n!}$

Math 182 Final Exam Version A
11. State the Taylor series expanded about $a=0$ along with the radius of convergence of the series for the following functions.
(i) $\frac{1}{1-x}$
(ii) $\sin x$
(iii) $\arctan x$
12. Find $\lim _{x \rightarrow 0} \frac{x e^{-x^{2}}-\sin x}{x^{3}}$

