1. Find the following indefinite integrals:

(i)
$$\int \frac{x^2}{\sqrt{x+1}} dx$$

(ii)
$$\int \frac{x^2}{x^2 - 1} \, dx$$

(iii)
$$\int (x^2 + 4) \sin(x + 2) \, dx$$

2. Find the following improper integrals:

(i)
$$\int_0^1 \frac{x+1}{\sqrt{x}} \, dx$$

(ii)
$$\int_0^\infty \frac{1}{x^2 + 3} \, dx$$

(iii)
$$\int_{1}^{\infty} \frac{1}{x(x+1)(x+2)} dx$$

3. Consider the following theorem from your book:

Theorem 9. Let $\{a_n\}$ be a sequence of positive terms. Suppose that $a_n = f(n)$, where f is a continuous, positive, decreasing function of x for all $x \ge N$ (N a positive integer). Then the series $\sum_{n=N}^{\infty} a_n$ and the integral $\int_N^{\infty} f(x) dx$ both converge or both diverge.

- (i) What is the name of this theorem?
- (ii) Establish this theorem for the case N = 1.

4. Determine whether the following series converge or diverge and explain your answer.

(i)
$$\sum_{n=1}^{\infty} \frac{5}{n^2}$$

(ii)
$$\sum_{n=7}^{\infty} \frac{2n}{n^2+1}$$

(iii)
$$\sum_{n=15}^{\infty} n e^{-n^2}$$