1. The Taylor's formula for 2^{x} when $a=0$ is

$$
2^{x}=\sum_{k=0}^{n} \frac{(\ln 2)^{k}}{k!} x^{k}+R_{n}(x) \quad \text { where } \quad R_{n}(x)=\frac{(\ln 2)^{n+1}}{(n+1)!} x^{n+1} 2^{\xi}
$$

and ξ is some number between 0 and x. Use the inequality

$$
0<2^{\xi} \leq \max \left(1,2^{x}\right)= \begin{cases}2^{x} & \text { if } x>0 \\ 1 & \text { if } x \leq 0\end{cases}
$$

to demonstrate the following.
(i) Show that $R_{n}(5) \rightarrow 0$ as $n \rightarrow \infty$.
(ii) Estimate how large n has to be in order to guarantee $\left|R_{n}(5)\right| \leq 0.5 \times 10^{-3}$.
(iii) Show that $R_{4}(x)=\mathcal{O}\left(x^{5}\right)$ as $x \rightarrow 0$.
(iv) Estimate how small $|x|$ has to be in order to guarantee $\left|R_{4}(x)\right| \leq 0.5 \times 10^{-3}$.

