Honors Math 182 Additional Study Problem For Exam 2

1. The Taylor's formula for 2^x when a = 0 is

$$2^{x} = \sum_{k=0}^{n} \frac{(\ln 2)^{k}}{k!} x^{k} + R_{n}(x) \qquad \text{where} \qquad R_{n}(x) = \frac{(\ln 2)^{n+1}}{(n+1)!} x^{n+1} 2^{\xi}$$

and ξ is some number between 0 and x. Use the inequality

$$0 < 2^{\xi} \le \max(1, 2^{x}) = \begin{cases} 2^{x} & \text{if } x > 0\\ 1 & \text{if } x \le 0 \end{cases}$$

to demonstrate the following.

(i) Show that $R_n(5) \to 0$ as $n \to \infty$.

(ii) Estimate how large n has to be in order to guarantee $|R_n(5)| \le 0.5 \times 10^{-3}$.

(iii) Show that $R_4(x) = \mathcal{O}(x^5)$ as $x \to 0$.

(iv) Estimate how small |x| has to be in order to guarantee $|R_4(x)| \le 0.5 \times 10^{-3}$.