Honors Math 182 Homework 6 Version A

1. Find the following definite and indefinite integrals:

(i)
$$\int \sin(3\vartheta) \cos(5\vartheta) d\vartheta$$

(ii) $\int \frac{1}{(\xi^2 - 4)^{3/2}} d\xi$
(iii) $\int_0^{\pi/2} \sin^4\left(\frac{\varphi}{4}\right) d\varphi$
(iv) $\int_2^7 \frac{1}{\zeta^2 \sqrt{\zeta^2 - 1}} d\zeta$

- 2. Find the volume generated by revolving the region bounded by $y = 4 x^2$ and y = x + 3 about the x-axis.
- **3.** Find the volume generated by revolving the region bounded by $y = \sec x$, y = 0, $x = -\pi/4$ and $x = \pi/4$ about the x-axis.
- 4. Find the volume generated by revolving the region bounded by $y = 2^x$, y = 1 and x = 3 about the x-axis.
- 5. Find the volume generated by revolving the region bounded by $y = 2 + \sin x$, y = 0, $x = \pi$ and $x = 2\pi$ about the y-axis.
- 6. Find the volume generated by revolving the region bounded by $y = \sqrt{1 + \sqrt{x}}$, y = 0, x = 0 and x = 4 about the y-axis.
- 7. Find the volume generated by revolving the region bounded by $y = \ln x$, y = x, x = 1 and x = 4 about the y-axis.
- 8. Consider the curve (f(t), g(t)) given by $f(t) = t^2$ and $g(t) = t \frac{1}{3}t^3$.
 - (i) Find the equation of the line tangent to this curve at the point $(f(\frac{1}{2}), g(\frac{1}{2}))$.
 - (ii) Find equation of the circle osculating with this curve at the point $(f(\frac{1}{2}), g(\frac{1}{2}))$.
- **9.** Consider the curve (C(t), S(t)) given by

$$C(t) = \int_0^t \cos(u^2) \, du$$
 and $S(t) = \int_0^t \sin(u^2) \, du$.

- (i) Find the unit tangent vector T at any point (C(t), S(t)) on this curve.
- (ii) Find the unit normal vector N at any point (C(t), S(t)) on this curve.
- (iii) Find the curvature κ at any point (C(t), S(t)) on this curve.