1. Find the following definite and indefinite integrals:
(i) $\int \sin (3 \vartheta) \cos (5 \vartheta) d \vartheta$
(ii) $\int \frac{1}{\left(\xi^{2}-4\right)^{3 / 2}} d \xi$
(iii) $\int_{0}^{\pi / 2} \sin ^{4}\left(\frac{\varphi}{4}\right) d \varphi$
(iv) $\int_{2}^{7} \frac{1}{\zeta^{2} \sqrt{\zeta^{2}-1}} d \zeta$
2. Find the volume generated by revolving the region bounded by $y=4-x^{2}$ and $y=x+3$ about the x-axis.
3. Find the volume generated by revolving the region bounded by $y=\sec x, y=0$, $x=-\pi / 4$ and $x=\pi / 4$ about the x-axis.
4. Find the volume generated by revolving the region bounded by $y=2^{x}, y=1$ and $x=3$ about the x-axis.
5. Find the volume generated by revolving the region bounded by $y=2+\sin x, y=0$, $x=\pi$ and $x=2 \pi$ about the y-axis.
6. Find the volume generated by revolving the region bounded by $y=\sqrt{1+\sqrt{x}}, y=0$, $x=0$ and $x=4$ about the y-axis.
7. Find the volume generated by revolving the region bounded by $y=\ln x, y=x$, $x=1$ and $x=4$ about the y-axis.
8. Consider the curve $(f(t), g(t))$ given by $f(t)=t^{2}$ and $g(t)=t-\frac{1}{3} t^{3}$.
(i) Find the equation of the line tangent to this curve at the point $\left(f\left(\frac{1}{2}\right), g\left(\frac{1}{2}\right)\right)$.
(ii) Find equation of the circle osculating with this curve at the point $\left(f\left(\frac{1}{2}\right), g\left(\frac{1}{2}\right)\right)$.
9. Consider the curve $(C(t), S(t))$ given by

$$
C(t)=\int_{0}^{t} \cos \left(u^{2}\right) d u \quad \text { and } \quad S(t)=\int_{0}^{t} \sin \left(u^{2}\right) d u
$$

(i) Find the unit tangent vector T at any point $(C(t), S(t))$ on this curve.
(ii) Find the unit normal vector N at any point $(C(t), S(t))$ on this curve.
(iii) Find the curvature κ at any point $(C(t), S(t))$ on this curve.

