Honors Math 182 Homework 8 Version A

1. Find to 5 digit accuracy the following definite integrals:
(i) $\int_{0}^{\pi / 6} x \tan x d x$
(ii) $\int_{0}^{1} \frac{u^{2}+u+3}{u^{3}-4 u^{2}+4 u+8} d u$
(iii) $\int_{0}^{\pi / 2} \sqrt{\sin y} d y$

$$
\text { (iv) } \int_{0}^{\pi} \sqrt{\tanh ^{2} t+\sin ^{2} t} d t
$$

2. The Taylor's formula for $\sinh x$ when $a=0$ is

$$
\sin x=\sum_{k=0}^{n} \frac{x^{2 k+1}}{(2 k+1)!}+R_{n}(x) \quad \text { where } \quad R_{n}(x)=\frac{x^{2 n+3}}{(2 n+3)!} \cosh \xi
$$

and ξ is some number between 0 and x. Use the inequality $\cosh \xi \leq \cosh x$ to
(i) Show that $R_{n}(3) \rightarrow 0$ as $n \rightarrow \infty$.
(ii) Estimate how large n has to be in order to guarantee $\left|R_{n}(3)\right| \leq 0.5 \times 10^{-4}$.
(iii) Show that $R_{2}(x)=\mathcal{O}\left(x^{7}\right)$ as $x \rightarrow 0$.
(iv) Use the inequality $\cosh \xi \leq \cosh 3$ for $|x| \leq 3$ to estimate to 5 digit accuracy how small $|x|$ has to be in order to guarantee $\left|R_{2}(x)\right| \leq 0.5 \times 10^{-4}$.
3. Consider the closed curve $(f(t), g(t))$ where $0 \leq t \leq 1$ given by

$$
f(t)=\frac{1}{4}+4 t^{2}(1-t) \quad \text { and } \quad g(t)=\frac{1}{4}+\sin \pi t
$$

(i) Find to 5 digit accuracy the length of this curve.
(ii) Find to 5 digit accuracy the area enclosed by the curve.

(iii) Find the equation of the line tangent to the curve at the point $\left(\frac{3}{4}, \frac{5}{4}\right)$.
(iv) Find the radius of curvature ρ of the curve at the point $\left(\frac{3}{4}, \frac{5}{4}\right)$.
(v) Find the area of the surface formed by rotating this curve about the x-axis.

Honors Math 182 Homework 8 Version A
4. Suppose $f(x)=\mathcal{O}\left(x^{2}\right)$ and $g(x)=\mathcal{O}\left(x^{7}\right)$ as $x \rightarrow 0$.
(i) Show $f(x)+g(x)=\mathcal{O}\left(x^{2}\right)$ as $x \rightarrow 0$.
(ii) Show $f(x) g(x)=\mathcal{O}\left(x^{9}\right)$ as $x \rightarrow 0$.
5. Find the first 3 non-zero terms of the Taylor series for $e^{x^{2}}$ where $a=0$.
6. Consider the region enclosed by the curve $f(x)=-4 x^{2}+8 x$ and $g(x)=x$.
(i) Find the volume formed by rotating this region about the x-axis.

(ii) Find the volume formed by rotating this region about the y-axis.
7. Compute the following limits.
(i) $\lim _{x \rightarrow 0} \frac{x-\sin x}{x^{3}}$
(ii) $\lim _{n \rightarrow \infty}\left(n-\sqrt{n^{2}+n+3}\right)$

