Honors Math 182 Homework 8 Version A

1. Find to 5 digit accuracy the following definite integrals:

(i)
$$\int_0^{\pi/6} x \tan x \, dx$$

(ii)
$$\int_0^1 \frac{u^2 + u + 3}{u^3 - 4u^2 + 4u + 8} \, du$$

(iii)
$$\int_0^{\pi/2} \sqrt{\sin y} \, dy$$

(iv)
$$\int_0^\pi \sqrt{\tanh^2 t + \sin^2 t} \, dt$$

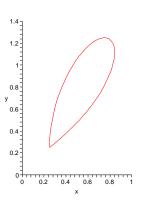
2. The Taylor's formula for $\sinh x$ when a = 0 is

$$\sin x = \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!} + R_n(x)$$
 where $R_n(x) = \frac{x^{2n+3}}{(2n+3)!} \cosh \xi$

and ξ is some number between 0 and x. Use the inequality $\cosh \xi \leq \cosh x$ to

(i) Show that $R_n(3) \to 0$ as $n \to \infty$.

(ii) Estimate how large n has to be in order to guarantee $|R_n(3)| \le 0.5 \times 10^{-4}$.


(iii) Show that $R_2(x) = \mathcal{O}(x^7)$ as $x \to 0$.

(iv) Use the inequality $\cosh \xi \le \cosh 3$ for $|x| \le 3$ to estimate to 5 digit accuracy how small |x| has to be in order to guarantee $|R_2(x)| \le 0.5 \times 10^{-4}$.

3. Consider the closed curve (f(t), g(t)) where $0 \le t \le 1$ given by

$$f(t) = \frac{1}{4} + 4t^2(1-t)$$
 and $g(t) = \frac{1}{4} + \sin \pi t$.

(i) Find to 5 digit accuracy the length of this curve.

(ii) Find to 5 digit accuracy the area enclosed by the curve.

(iii) Find the equation of the line tangent to the curve at the point $(\frac{3}{4}, \frac{5}{4})$.

(iv) Find the radius of curvature ρ of the curve at the point $(\frac{3}{4}, \frac{5}{4})$.

(v) Find the area of the surface formed by rotating this curve about the x-axis.

Honors Math 182 Homework 8 Version A

- **4.** Suppose $f(x) = \mathcal{O}(x^2)$ and $g(x) = \mathcal{O}(x^7)$ as $x \to 0$.
 - (i) Show $f(x) + g(x) = \mathcal{O}(x^2)$ as $x \to 0$.

(ii) Show $f(x)g(x) = \mathcal{O}(x^9)$ as $x \to 0$.

5. Find the first 3 non-zero terms of the Taylor series for e^{x^2} where a=0.

Honors Math 182 Homework 8 Version A

- **6.** Consider the region enclosed by the curve $f(x) = -4x^2 + 8x$ and g(x) = x.
 - (i) Find the volume formed by rotating this region about the x-axis.

(ii) Find the volume formed by rotating this region about the y-axis.

7. Compute the following limits.

(i)
$$\lim_{x \to 0} \frac{x - \sin x}{x^3}$$

(ii)
$$\lim_{n\to\infty} \left(n-\sqrt{n^2+n+3}\right)$$