Honors Math 182 Exam 2 Version B

1. Find to 5 digit accuracy the following definite integrals:
(i) $\int_{1}^{2}(1+u)^{1 / 3} d u$
(ii) $\int_{0}^{\pi} \frac{\cos x+\sin ^{2} x}{\sin x+\cos ^{2} x} d x$
(iii) $\int_{0}^{1} \frac{1}{\sqrt{1+y+y^{2}+y^{3}}} d y$
(iv) $\int_{1}^{e}(\ln t)^{8} d t$
2. The Taylor's formula for $\cos x$ when $a=0$ is

$$
\cos x=\sum_{k=0}^{n} \frac{(-1)^{k}}{(2 k)!} x^{2 k}+R_{n}(x) \quad \text { where } \quad R_{n}(x)=\frac{(-1)^{n+1}}{(2 n+2)!} x^{2 n+2} \cos \xi
$$

and ξ is some number between 0 and x. Use the inequality $|\cos \xi| \leq 1$ to
(i) Show that $R_{n}(5) \rightarrow 0$ as $n \rightarrow \infty$.
(ii) Estimate how large n has to be in order to guarantee $\left|R_{n}(5)\right| \leq 0.5 \times 10^{-4}$.
(iii) Show that $R_{2}(x)=\mathcal{O}\left(x^{6}\right)$ as $x \rightarrow 0$.
3. Consider the closed curve $(f(t), g(t))$ where $0 \leq t \leq 2 \pi$ given by

$$
f(t)=2 \cos t+\cos 5 t \quad \text { and } \quad g(t)=3 \sin t
$$

(i) Find to 5 digit accuracy the length of this curve.

(ii) Find to 5 digit accuracy the area enclosed by the curve.
(iii) Find the equation of the line tangent to the curve at the point $\left(\frac{\sqrt{2}}{2}, \frac{3 \sqrt{2}}{2}\right)$.
(iv) Find the radius of curvature ρ of the curve at the point $\left(\frac{\sqrt{2}}{2}, \frac{3 \sqrt{2}}{2}\right)$.

Honors Math 182 Exam 2 Version B
4. Suppose $f(x)=\mathcal{O}\left(x^{5}\right)$ and $g(x)=\mathcal{O}(x)$ as $x \rightarrow 0$.
(i) Show $f(x)+g(x)=\mathcal{O}(x)$ as $x \rightarrow 0$.
(ii) Show $f(x) g(x)=\mathcal{O}\left(x^{6}\right)$ as $x \rightarrow 0$.
5. Find the first 3 non-zero terms of the Taylor series for $\ln \left(1+x^{2}\right)$ where $a=0$.
6. Consider the region enclosed by the curve $f(x)=4 \sin x$ and $g(x)=\sqrt{6}-\sqrt{2}$.
(i) Find the volume formed by rotating this region about the x-axis.

(ii) Find the volume formed by rotating this region about the y-axis.
7. Compute the limit $\lim _{x \rightarrow 0} \frac{\sin x-x \cos x}{x^{3}}$

