1. State Taylor's formula using big- \mathcal{O} for the remainder where $a=0$ for the functions (i) e^{x}
(ii) $\sin x$
(iii) $\cos x$
(iv) $\log (1-x)$
(v) $\arctan x$
(vi) $(1+x)^{\alpha}$
2. Find the following derivatives:
(i) $\frac{d}{d x}|\sinh 2 x|^{2}$
(ii) $\frac{d}{d x} \frac{x}{1+e^{x}}$
(iii) $\frac{d}{d x} \arctan \left(1+x^{2}\right)$
(iv) $\frac{d}{d x}(2+\sin x)^{\ln x}$
3. Solve the following indefinite integrals:
(i) $\int \ln (3 x) d x$
(ii) $\int \frac{x^{2}+17}{x+3} d x$
(iii) $\int x \sin ^{2} x d x$
(iv) $\int \frac{x}{\sqrt[3]{x+1}} d x$

Honors Math 182 Final Version A

4. Solve the following definite integrals:
(i) $\int_{0}^{1} \frac{1}{(x+1)(x-2)} d x$
(ii) $\int_{-4}^{1} x \sqrt{x+8} d x$
(iii) $\int_{0}^{1} \frac{1}{1+e^{x}} d x$

$$
\text { (iv) } \int_{0}^{\pi}|\sin 2 x| \cos x d x
$$

Honors Math 182 Final Version A

5. Use Taylor's series or L'Hôpital's rule to find the following limits if they exist.
(i) $\lim _{x \rightarrow 0} \frac{2 x e^{x}+\ln (1-2 x)}{x^{3}}$
(ii) $\lim _{x \rightarrow 0} \frac{\ln \left(1+x^{2}\right)-x^{2} \cos }{x^{6}}$
(iii) $\lim _{x \rightarrow 0} \frac{\ln \left(1-x^{2}\right)+x \arctan x}{x^{4}}$
(iv) $\lim _{x \rightarrow 0} \frac{\ln \left(1+x^{2}\right)+x^{2} \cos }{x^{6}}$
6. Show that $\sum_{n=1}^{\infty} \frac{1}{n+13}=\infty$ by comparing the sum with a suitable integral.
7. Show that $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}<\infty$ by using the ratio test.
8. Give an example of a series of the form $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ where $a_{n}>0$ that converges.
9. Give an example of a series of the form $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ where $a_{n}>0$ that diverges.
10. Find the arc length of the curve $y=x^{3 / 2}$ from $x=0$ to $x=2$.
11. Find the volume generated by revolving the region bounded by the curves $y=x^{2}$ and $y^{2}=8 x$ around the x axis.
12. Find the curvature κ and radius of curvature ρ at the point $(e, 1)$ on the curve given by $(f(t), g(t))$ where $f(t)=e^{t}$ and $g(t)=\sin (\pi t / 2)$ where $0 \leq t \leq 2$
13. Comparison with the geometric series yields

Theorem. If there is N large enough such that $\left|a_{n}\right|<c q^{n}$ for some $q \in(0,1)$ and all $n \geq N$, then $\sum_{n=1}^{\infty} a_{n}$ converges.
Use this theorem to prove one of the following corollaries:
(i) Ratio Test. Suppose $\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=L$ where $L<1$. Then $\sum_{n=1}^{\infty} a_{n}$ converges.
(ii) Root Test. Suppose $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L$ where $L<1$, Then $\sum_{n=1}^{\infty} a_{n}$ converges.
14. Consider the curve $(f(t), g(t))$ given by

$$
f(t)=t \cos t \quad \text { and } \quad g(t)=\sqrt{t} \sin t \quad \text { where } \quad 0 \leq t \leq 2 \pi
$$

Find the equation of the line tangent to the curve at the point $(f(\pi / 6), g(\pi / 6))$.
15. Find the surface of revolution generated by revolving the arc $y=\frac{1}{4} x^{4}+\frac{1}{8} x^{-2}$ where $1 \leq x \leq 2$ about the y-axis.
16. Find the area enclosed by the parametric curve $(f(t), g(t))$ given by $f(t)=\sin t$ and $g(t)=\cos t$ where $0 \leq t \leq 2 \pi$.

