State Taylor's formula using big-O for the remainder where a = 0 for the functions
 (i) e^x

(ii) $\sin x$

(iii) $\cos x$

(iv) $\log(1-x)$

(v) $\arctan x$

(vi) $(1+x)^{\alpha}$

2. Find the following derivatives:

(i)
$$\frac{d}{dx} |\sinh 2x|^2$$

(ii)
$$\frac{d}{dx}\frac{x}{1+e^x}$$

(iii)
$$\frac{d}{dx} \arctan(1+x^2)$$

(iv)
$$\frac{d}{dx}(2+\sin x)^{\ln x}$$

3. Solve the following indefinite integrals:

(i)
$$\int \ln(3x) dx$$

(ii)
$$\int \frac{x^2 + 17}{x + 3} dx$$

(iii)
$$\int x \sin^2 x \, dx$$

(iv)
$$\int \frac{x}{\sqrt[3]{x+1}} dx$$

4. Solve the following definite integrals:

(i)
$$\int_0^1 \frac{1}{(x+1)(x-2)} dx$$

(ii)
$$\int_{-4}^{1} x\sqrt{x+8} \, dx$$

(iii)
$$\int_0^1 \frac{1}{1+e^x} \, dx$$

(iv)
$$\int_0^\pi |\sin 2x| \cos x \, dx$$

5. Use Taylor's series or L'Hôpital's rule to find the following limits if they exist.

(i)
$$\lim_{x \to 0} \frac{2xe^x + \ln(1-2x)}{x^3}$$

(ii)
$$\lim_{x \to 0} \frac{\ln(1+x^2) - x^2 \cos}{x^6}$$

(iii)
$$\lim_{x \to 0} \frac{\ln(1-x^2) + x \arctan x}{x^4}$$

(iv)
$$\lim_{x \to 0} \frac{\ln(1+x^2) + x^2 \cos x^6}{x^6}$$

6. Show that $\sum_{n=1}^{\infty} \frac{1}{n+13} = \infty$ by comparing the sum with a suitable integral.

7. Show that
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n} < \infty$$
 by using the ratio test.

8. Give an example of a series of the form $\sum_{n=1}^{\infty} (-1)^n a_n$ where $a_n > 0$ that converges.

9. Give an example of a series of the form $\sum_{n=1}^{\infty} (-1)^n a_n$ where $a_n > 0$ that diverges.

10. Find the arc length of the curve $y = x^{3/2}$ from x = 0 to x = 2.

11. Find the volume generated by revolving the region bounded by the curves $y = x^2$ and $y^2 = 8x$ around the x axis.

12. Find the curvature κ and radius of curvature ρ at the point (e, 1) on the curve given by (f(t), g(t)) where $f(t) = e^t$ and $g(t) = \sin(\pi t/2)$ where $0 \le t \le 2$

13. Comparison with the geometric series yields

Theorem. If there is N large enough such that $|a_n| < cq^n$ for some $q \in (0, 1)$ and all $n \ge N$, then $\sum_{n=1}^{\infty} a_n$ converges.

Use this theorem to prove one of the following corollaries:

(i) Ratio Test. Suppose lim_{n→∞} |a_{n+1}|/|a_n| = L where L < 1. Then ∑_{n=1}[∞] a_n converges.
(ii) Root Test. Suppose lim_{n→∞} ⁿ√|a_n| = L where L < 1, Then ∑_{n=1}[∞] a_n converges.

14. Consider the curve (f(t), g(t)) given by

 $f(t) = t \cos t$ and $g(t) = \sqrt{t} \sin t$ where $0 \le t \le 2\pi$.

Find the equation of the line tangent to the curve at the point $(f(\pi/6), g(\pi/6))$.

15. Find the surface of revolution generated by revolving the arc $y = \frac{1}{4}x^4 + \frac{1}{8}x^{-2}$ where $1 \le x \le 2$ about the *y*-axis.

16. Find the area enclosed by the parametric curve (f(t), g(t)) given by $f(t) = \sin t$ and $g(t) = \cos t$ where $0 \le t \le 2\pi$.