Feel free to use the computers, your calculator, notes and textbooks while working on this quiz. You may also use online resources such as Wikipedia, Google and Wolfram Alpha; however, do not use email or any other messaging service during the quiz.

Solve the following multiple-choice antiderivative problems:

1. $\int 3 x^{2} d x$
(A) $x^{3}+C$
(B) $x^{3}-7+C$
(C) $(x-1)^{3}+3 x^{2}-3 x+C$
(D) all of the above
2. $\int 2 \sin 2 x d x$
(A) $\sin ^{2} x-\cos ^{2} x+C$
(B) $\frac{1}{2} \cos 2 x+C$
(C) $2 \cos 2 x+C$
(D) $\cos 2 x+C$
3. $\int \ln \left(\frac{1}{x^{2}+2 x+1}\right) d x$
(A) $2(x+1)(1+\ln |x+1|)+C$
(B) $-2(x+1)(1+\ln |x+1|)+C$
(C) $2(x+1)(1-\ln |x+1|)+C$
(D) $\quad-2(x+1)(1-\ln |x+1|)+C$
4. $\int \frac{1}{\sqrt{4+x^{2}}} d x$
(A) $\ln \left(x+\sqrt{x^{2}+4}\right)+C$
(B) $2 \ln \left(x+\sqrt{x^{2}+4}\right)+C$
(C) $\operatorname{asinh}(x / 2)+C$
(D) both A and C
(E) both B and C
5. The hyperbola $x^{2}-y^{2}=1$ is depicted below along with a shaded region determined by the point $P=\left(\frac{5}{3}, \frac{4}{3}\right)$.

(i) Find an expression for the exact area of the shaded region.
(ii) Find a decimal approximation for this area that is accurate to at least 5 digits.
6. Find the following derivatives.
(i) $\frac{d}{d x}|\sin x|^{3}$
(ii) $\frac{d}{d x}\left(7 \arctan x^{2}\right)$
