Honors Math 182 Quiz 2 Version A

Feel free to use the computers, your calculator, notes and textbooks while working on this quiz. You may also use online resources such as Wikipedia, Google and Wolfram Alpha; however, do not use email or any other messaging service during the quiz.

Solve the following multiple-choice antiderivative problems:

1.
$$\int 3x^2 dx$$

(A)
$$x^3 + C$$

(B)
$$x^3 - 7 + C$$

(C)
$$(x-1)^3 + 3x^2 - 3x + C$$

$$2. \int 2\sin 2x \, dx$$

(A)
$$\sin^2 x - \cos^2 x + C$$

(B)
$$\frac{1}{2}\cos 2x + C$$

(C)
$$2\cos 2x + C$$

(D)
$$\cos 2x + C$$

$$3. \int \ln\left(\frac{1}{x^2 + 2x + 1}\right) dx$$

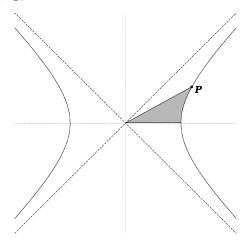
(A)
$$2(x+1)(1+\ln|x+1|)+C$$

(B)
$$-2(x+1)(1+\ln|x+1|)+C$$

(C)
$$2(x+1)(1-\ln|x+1|)+C$$

(D)
$$-2(x+1)(1-\ln|x+1|)+C$$

4.
$$\int \frac{1}{\sqrt{4+x^2}} \, dx$$


$$(A) \quad \ln(x + \sqrt{x^2 + 4}) + C$$

(B)
$$2\ln(x+\sqrt{x^2+4})+C$$

(C)
$$asinh(x/2) + C$$

Honors Math 182 Quiz 2 Version A

5. The hyperbola $x^2 - y^2 = 1$ is depicted below along with a shaded region determined by the point $P = \left(\frac{5}{3}, \frac{4}{3}\right)$.

(i) Find an expression for the exact area of the shaded region.

(ii) Find a decimal approximation for this area that is accurate to at least 5 digits.

6. Find the following derivatives.

(i)
$$\frac{d}{dx}|\sin x|^3$$

(ii)
$$\frac{d}{dx} (7 \arctan x^2)$$