Feel free to use the computers, your calculator, notes and textbooks while working on this quiz. You may also use online resources such as Wikipedia, Google and Wolfram Alpha; however, do not use email or any other messaging service during the quiz.

1. Solve the following multiple-choice antiderivative problems:
(i) $\int 6 \cos (2 x) \sin (x) d x$
(A) $3 \cos x-\cos 3 x+C$
(B) $6 \cos x-4 \cos ^{3} x+C$
(C) $-2 \cos ^{3} x+C$
(D) both (A) and (B)
(E) both (A) and (C)
(ii) $\int|2 x| d x$
(A) $x^{2}+C$
(B) $x|x|+C$
(C) $-x^{2}+C$
(D) $-x|x|+C$
2. Substitute $u=\ln x$ in the following integrals, but DO NOT SOLVE THEM!
(i) $\int_{1}^{2} \ln x d x$
(ii) $\int_{1}^{e} \arctan x d x$
3. Let $C(t)=\int_{0}^{t} \cos \left(u^{2}\right) d u$ and $S(t)=\int_{0}^{t} \sin \left(u^{2}\right) d u$.
(i) Find the length of the curve given by $(C(t), S(t))$ where $0 \leq t \leq \pi$.

(ii) Find to 5 digits accuracy the area of the surface generated by revolving the curve $(C(t), S(t))$ where $0 \leq t \leq \pi$ about the x-axis.
(iii) Find to 5 digits accuracy the area of the surface generated by revolving the curve $(C(t), S(t))$ where $0 \leq t \leq \pi$ about the y-axis.
