Honors Math 182 Quiz 5 Version A

Feel free to use the computers, your calculator, notes and textbooks while working on this quiz. You may also use online resources such as Wikipedia, Google and Wolfram Alpha; however, do not use email or any other messaging service during the quiz.

1. Solve the following multiple-choice antiderivative problems:

(i)
$$\int 6\cos(2x)\sin(x) dx$$

(A) $3\cos x - \cos 3x + C$
(B) $6\cos x - 4\cos^3 x + C$
(C) $-2\cos^3 x + C$
(D) both (A) and (B)
(E) both (A) and (C)
(ii) $\int |2x| dx$
(A) $x^2 + C$
(B) $x|x| + C$
(C) $-x^2 + C$
(D) $-x|x| + C$

2. Substitute $u = \ln x$ in the following integrals, but DO NOT SOLVE THEM!

(i)
$$\int_{1}^{2} \ln x \, dx$$

(ii)
$$\int_1^e \arctan x \, dx$$

Honors Math 182 Quiz 5 Version A

3. Let
$$C(t) = \int_0^t \cos(u^2) \, du$$
 and $S(t) = \int_0^t \sin(u^2) \, du$.

(i) Find the length of the curve given by (C(t), S(t)) where $0 \le t \le \pi$.

(ii) Find to 5 digits accuracy the area of the surface generated by revolving the curve (C(t), S(t)) where $0 \le t \le \pi$ about the *x*-axis.

(iii) Find to 5 digits accuracy the area of the surface generated by revolving the curve (C(t), S(t)) where $0 \le t \le \pi$ about the *y*-axis.