Feel free to use the computers, your calculator, notes and textbooks while working on this quiz. You may also use online resources such as Wikipedia, Google and Wolfram Alpha; however, do not use email or any other messaging service during the quiz.

1. Let f be an $n+1$ times continuously differentiable function. Taylor's formula says

$$
f(x)=\sum_{k=0}^{n} \frac{(x-a)^{k}}{k!} f^{(k)}(a)+\int_{a}^{x} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) d t
$$

The sum in the above formula is denoted $P_{n}(x)$ and called Taylor's polynomial.
(i) Find $P_{5}(x)$ corresponding to $f(x)=\sqrt{x+1}$ when $a=0$.
(ii) Compute $P_{5}(1 / 2)$ and write your answer as a fraction.
(iii) Find the remainder $f(1 / 2)-P_{5}(1 / 2)$ and write your answer as a decimal.
2. Consider the curve $(f(t), g(t))$ given by

$$
f(t)=(\cos t)(2+\sin 5 t) \quad \text { and } \quad g(t)=(\sin t)(2+\sin 5 t)
$$

where $0 \leq t \leq 2 \pi$.
(i) Find the length of this curve.

(ii) Find the slope of the line tangent to this curve at the point $(2,0)$.
(iii) Find the radius of the circle osculating with this curve at the point $(2,0)$.

