1. State Taylor's formula with remainder where $a=0$ and $b=x$ for the functions (i) e^{x}
(ii) $\sin x$
(iii) $\cos x$
(iv) $\log (1-x)$
(v) $\arctan x$
(vi) $(1+x)^{\alpha}$
2. Find the following derivatives:
(i) $\frac{d}{d x}|\sinh 2 x|^{2}$
(ii) $\frac{d}{d x} \frac{x}{1+e^{x}}$
(iii) $\frac{d}{d x} \arctan \left(1+x^{2}\right)$
(iv) $\frac{d}{d x}(2+\sin x)^{\ln x}$
3. Solve the following indefinite integrals:
(i) $\int \ln (3 x) d x$
(ii) $\int \frac{x^{2}+17}{x+3} d x$
(iii) $\int x \sin ^{2} x d x$
(iv) $\int \frac{x}{\sqrt[3]{x+1}} d x$

Honors Math 182 Final Version A

4. Solve the following definite integrals:
(i) $\int_{0}^{1} \frac{1}{(x+1)(x-2)} d x$
(ii) $\int_{-4}^{1} x \sqrt{x+8} d x$
(iii) $\int_{0}^{1} \frac{1}{1+e^{x}} d x$

$$
\text { (iv) } \int_{0}^{\pi}|\sin 2 x| \cos x d x
$$

Honors Math 182 Final Version A

5. Use Taylor's series or L'Hôpital's rule to find the following limits if they exist.
(i) $\lim _{x \rightarrow 0} \frac{2 x e^{x}+\ln (1-2 x)}{x^{3}}$
(ii) $\lim _{x \rightarrow 0} \frac{\ln \left(1+x^{2}\right)-x^{2} \cos x}{x^{6}}$
(iii) $\lim _{x \rightarrow 0} \frac{\ln \left(1-x^{2}\right)+x \arctan x}{x^{4}}$
(iv) $\lim _{x \rightarrow 0} \frac{\ln \left(1-x^{2}\right)+x^{2} \cos x}{x^{6}}$
6. Show that $\sum_{n=1}^{\infty} \frac{1}{n+13}=\infty$ by comparing the sum with a suitable integral.
7. Show that $\sum_{n=1}^{\infty} \frac{n}{e^{n}}<\infty$ by comparing the sum with a suitable integral.
8. Give an example of a series of the form $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ where $a_{n}>0$ that converges.
9. Give an example of a series of the form $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ where $a_{n}>0$ that diverges.
10. Find the arc length of the curve $y=x^{3 / 2}$ from $x=0$ to $x=2$.
11. Find the volume generated by revolving the region bounded by the curves $y=x^{2}$ and $y^{2}=8 x$ around the x axis.
12. Find the surface of revolution generated by revolving the arc $y=\frac{1}{4} x^{4}+\frac{1}{8} x^{-2}$ where $1 \leq x \leq 2$ about the y-axis.
13. Prove one of the following theorems:

Theorem 8. Let a_{k} be a sequence such that $a_{k} \geq 0$ for $k=1,2, \ldots$ and assume there is a number $s>0$ such that $a_{k}^{1 / k} \leq s$ for all but a finite number of integers k. Let $r<1 / s$ and $r>0$. Then the series $\sum_{k=1}^{\infty} a_{k} r^{k}$ converges.
Theorem 9. Let a_{k} be a sequence such that $a_{k} \geq 0$ for $k=1,2, \ldots$ and assume there is a number $s>0$ such that $a_{k}^{1 / k} \geq s$ for infinitely many integers k. Let $r>1 / s$. Then the series $\sum_{k=1}^{\infty} a_{k} r^{k}$ diverges.
14. A cone-shaped paper drinking cup is to be made to hold $27 \mathrm{~cm}^{3}$ of water. Find the height and radius of the cup that will use the smallest amount of paper.

