1. Taylor's formula for $f(x)=\ln (1-x)$ when $a=0$ is

$$
\ln (1-x)=-\sum_{k=1}^{n} \frac{x^{k}}{k}-\int_{0}^{x} \frac{t^{n}}{1-t} d t
$$

(i) Given $|x|<1$, the remainder may be estimated as

$$
\left|\int_{0}^{x} \frac{t^{n}}{1-t} d t\right| \leq\left|\int_{0}^{x} \frac{|t|^{n}}{1-|x|} d t\right|=\frac{1}{1-|x|} \int_{0}^{|x|} t^{n} d t=\frac{|x|^{n+1}}{(1-|x|)(n+1)}
$$

Use this estimate to show that if $|x|<1$ then the remainder term tends to zero as $n \rightarrow \infty$.
(ii) Given $x=1 / 2$ estimate how large n needs to be so the bound on the remainder is less than 0.5×10^{-4}.
(iii) Use the value of n found in Part (ii) to approximate $\ln (1 / 2)$.
2. Taylor's formula for $f(x)=\sin x$ when $a=0$ is

$$
\sin x=\sum_{l=0}^{m}(-1)^{l} \frac{x^{2 l+1}}{(2 l+1)!}+(-1)^{m+1} \int_{0}^{x} \frac{(x-t)^{2 m+2}}{(2 m+2)!} \cos t d t .
$$

(i) Show for $x=3$ that the remainder term tends to zero as $m \rightarrow \infty$.
(ii) Estimate how large m needs to be so the magnitude of the remainder is less than 0.5×10^{-4}.
(iii) Use the value of m found in Part (ii) to approximate $\sin 3$.
3. The trigonometric identity $\sin x=\sin (\pi-x)$ shows that

$$
\sin x=\sum_{l=0}^{m}(-1)^{l} \frac{(\pi-x)^{2 l+1}}{(2 l+1)!}+(-1)^{m+1} \int_{0}^{\pi-x} \frac{(\pi-x-t)^{2 m+2}}{(2 m+2)!} \cos t d t
$$

(i) For $x=3$ estimate how large m needs to be so the magnitude of the remainder is less than 0.5×10^{-4}.
(ii) Use the value of m found in Part (i) to approximate $\sin 3$.
4. Check the speed of convergence of the series approximation for $\sin 3$ found in Question 2 and the series approximation in Question 3 by computing the respective sums for values of $m=1,2, \ldots, 10$ and comparing each sum to the exact value of $\sin 3$.

Honors Math 182 Homework 5 Version A
5. Use Taylor series or L'Hôpital's rule to find the following limits if they exist.
(i) $\lim _{x \rightarrow 0} \frac{e^{x^{2}}-\cos x}{x^{2}}$
(ii) $\lim _{x \rightarrow 0^{+}} \frac{x^{6}}{\ln \left(1+x^{2}\right)-x^{2} \cos x}$
(iii) $\lim _{x \rightarrow 0} \frac{\sin 3 x}{x^{3}}$
(iv) $\lim _{x \rightarrow 0^{-}} \frac{\sin x-x \cos x}{x^{3}}$
(v) $\lim _{x \rightarrow 0} \frac{\ln \left(1-x^{2}\right)+x \arctan x}{x^{4}}$
(vi) $\lim _{x \rightarrow 0^{-}} \frac{1-\cos x}{\sin x}$
(vii) $\lim _{x \rightarrow 0} \frac{e^{x}-\sin x}{\cos x}$
(viii) $\lim _{x \rightarrow 0^{+}} \frac{x e^{-x^{2}}-\sin x}{2 x e^{x}+\ln (1-2 x)}$
(ix) $\lim _{x \rightarrow 0} \frac{1-\sqrt{1+4 x^{2}}}{\sin ^{4} x}$
(x) $\lim _{x \rightarrow 0} \frac{x+(x-1) \ln (x+1)}{x e^{x}-\sin x}$

