1. Taylor's formula for $f(x) = \ln(1-x)$ when a = 0 is

$$\ln(1-x) = -\sum_{k=1}^{n} \frac{x^k}{k} - \int_0^x \frac{t^n}{1-t} dt.$$

(i) Given |x| < 1, the remainder may be estimated as

$$\left| \int_0^x \frac{t^n}{1-t} \, dt \right| \le \left| \int_0^x \frac{|t|^n}{1-|x|} \, dt \right| = \frac{1}{1-|x|} \int_0^{|x|} t^n \, dt = \frac{|x|^{n+1}}{(1-|x|)(n+1)}.$$

Use this estimate to show that if |x| < 1 then the remainder term tends to zero as $n \to \infty$.

- (ii) Given x = 1/2 estimate how large n needs to be so the bound on the remainder is less than 0.5×10^{-4} .
- (iii) Use the value of n found in Part (ii) to approximate $\ln(1/2)$.
- **2.** Taylor's formula for $f(x) = \sin x$ when a = 0 is

$$\sin x = \sum_{l=0}^{m} (-1)^{l} \frac{x^{2l+1}}{(2l+1)!} + (-1)^{m+1} \int_{0}^{x} \frac{(x-t)^{2m+2}}{(2m+2)!} \cos t \, dt.$$

- (i) Show for x=3 that the remainder term tends to zero as $m\to\infty$.
- (ii) Estimate how large m needs to be so the magnitude of the remainder is less than 0.5×10^{-4} .
- (iii) Use the value of m found in Part (ii) to approximate $\sin 3$.
- **3.** The trigonometric identity $\sin x = \sin(\pi x)$ shows that

$$\sin x = \sum_{l=0}^{m} (-1)^{l} \frac{(\pi - x)^{2l+1}}{(2l+1)!} + (-1)^{m+1} \int_{0}^{\pi - x} \frac{(\pi - x - t)^{2m+2}}{(2m+2)!} \cos t \, dt.$$

- (i) For x = 3 estimate how large m needs to be so the magnitude of the remainder is less than 0.5×10^{-4} .
- (ii) Use the value of m found in Part (i) to approximate $\sin 3$.
- **4.** Check the speed of convergence of the series approximation for $\sin 3$ found in Question 2 and the series approximation in Question 3 by computing the respective sums for values of $m = 1, 2, \ldots, 10$ and comparing each sum to the exact value of $\sin 3$.

Honors Math 182 Homework 5 Version A

5. Use Taylor series or L'Hôpital's rule to find the following limits if they exist.

(i)
$$\lim_{x \to 0} \frac{e^{x^2} - \cos x}{x^2}$$

(ii)
$$\lim_{x \to 0^+} \frac{x^6}{\ln(1+x^2) - x^2 \cos x}$$

(iii)
$$\lim_{x\to 0} \frac{\sin 3x}{x^3}$$

(iv)
$$\lim_{x\to 0^-} \frac{\sin x - x\cos x}{x^3}$$

(v)
$$\lim_{x\to 0} \frac{\ln(1-x^2) + x \arctan x}{x^4}$$

(vi)
$$\lim_{x \to 0^-} \frac{1 - \cos x}{\sin x}$$

(vii)
$$\lim_{x \to 0} \frac{e^x - \sin x}{\cos x}$$

(viii)
$$\lim_{x\to 0^+} \frac{xe^{-x^2} - \sin x}{2xe^x + \ln(1-2x)}$$

(ix)
$$\lim_{x\to 0} \frac{1-\sqrt{1+4x^2}}{\sin^4 x}$$

(x)
$$\lim_{x\to 0} \frac{x + (x-1)\ln(x+1)}{xe^x - \sin x}$$