1. Find the solution to each of the following differential equations:
(i) $\left\{\begin{array}{l}y^{\prime}+2 y=e^{-x} \\ y(0)=3\end{array}\right.$
(ii) $\left\{\begin{array}{l}y^{\prime}-y=\sin ^{2}(x) \\ y(0)=-1\end{array}\right.$
(iii) $\left\{\begin{array}{l}y^{\prime}+y=\frac{1}{1+x^{2}} \\ y(0)=0\end{array}\right.$
(iv) $\left\{\begin{array}{l}y^{\prime}-2 x y=x \\ y(0)=1\end{array}\right.$
2. Find the volumes of revolution of the following:
(i) Under $y=\sec x$ between $x=0$ and $x=\pi / 4$ rotated around the x-axis.
(ii) Under $y=\sin x$ between $x=0$ and $x=\pi / 4$ rotated around the x-axis.
(iii) Under $y=\sqrt{1+x}$ between $x=1$ and $x=5$ rotated around the x-axis.
(iv) Under $y=\sec x$ between $x=0$ and $x=\pi / 4$ rotated around the y-axis.
(v) Under $y=\sin x$ between $x=0$ and $x=\pi / 4$ rotated around the y-axis.
(vi) Under $y=\sqrt{1+x}$ between $x=1$ and $x=5$ rotated around the y-axis.
3. Use Taylor's formula

$$
\ln (1-x)=-\sum_{k=1}^{n} \frac{x^{k}}{k}-\int_{0}^{x} \frac{t^{n+1}}{1-t} d t
$$

to approximate $\ln (4)$ in the following ways:
(i) Set $x=3 / 4$ and compute

$$
S_{n}=\sum_{k=1}^{n} \frac{(3 / 4)^{k}}{k}
$$

for values of $n=1,2, \ldots, 10$.
(ii) Set $x=1 / 2$ and compute

$$
T_{n}=2 \sum_{k=1}^{n} \frac{(1 / 2)^{k}}{k}
$$

for values of $n=1,2, \ldots, 10$.
(iii) Which method works better? Explain why.

