1. State Euler’s method for solving the ordinary differential equation \(y' = f(x, y) \) with the initial condition \(y(x_0) = y_0 \).

2. Given \(n \) let \(h = (b - x_0)/n \) and \(x_i = x_0 + hi \). The fourth-order Runge-Kutta method for solving \(y' = f(x, y) \) such that \(y(x_0) = y_0 \) is given by

\[
\begin{align*}
 k_1 &= hf(x_i, y_i) \\
 k_2 &= hf(x_i + h/2, y_i + k_1/2) \\
 k_3 &= hf(x_i + h/2, y_i + k_2/2) \\
 k_4 &= hf(x_i + h, y_i + k_3) \\
 y_{i+1} &= y_i + (1/6)(k_1 + 2k_2 + 2k_3 + k_4)
\end{align*}
\]

Explain what it means in terms of the absolute error \(|y(b) - y_n| \) and the step-size \(h \) that this method is fourth-order.

3. Find the critical points of the autonomous first-order differential equation

\[
\frac{dy}{dx} = (y - 3)(y - 2)^2(y - 1).
\]

Classify each critical point as asymptotically stable, unstable or semi-stable.

4. Find an explicit solution to

\[
\frac{dy}{dx} - 2y = 1 + x \quad \text{where} \quad y(0) = 1.
\]

5. Solve the initial value problem

\[
\frac{dy}{dx} = \frac{3x^2 + 1}{y + 1} \quad \text{where} \quad y(0) = 1.
\]

Find the exact value of \(y(1) \).

6. Determine whether the differential equation

\[
(e^{2y} - y \cos xy)dx + (2xe^{2y} - x \cos xy + 2y)dy = 0
\]

is exact.

7. Solve the initial value problem

\[
ty' + 2y = \sin t \quad \text{where} \quad y(\pi/2) = 1.
\]
Math 285 Exam 1 Version A

8. Solve the initial value problem

\[y' = xy^3(1 + x^2)^{1/2} \quad \text{where} \quad y(0) = 1. \]

9. Find the critical points of the autonomous first-order differential equation

\[\frac{dy}{dx} = y^3 - 9y \]

Classify each critical point as asymptotically stable, unstable or semi-stable.

10. Solve the equation

\[y \, dx + (2x - ye^y) \, dy = 0 \]

Hint: Make it exact by using an integrating factor \(\mu = \mu(y) \).

11. Find the general solution to the second order differential equation \(y'' - 2y' + y = 0 \).

12. Solve the second order initial value problem

\[y'' - 6y' + 10y = 0 \quad \text{where} \quad y(0) = 1 \quad \text{and} \quad y'(0) = 3. \]

13. Find the general solution to the initial value problem \(y' = \sin(x + y) \).

Hint: Try the substitution \(v = x + y \).

14. Solve the homogeneous initial value problem

\[(x^2 + 2y^2) \, dx - xy \, dy = 0 \quad \text{where} \quad y(-1) = 1. \]

15. The function \(y_1 = x^4 \) is one solution to the second order differential equation

\[x^2 y'' - 7xy' + 16y = 0. \]

Find a second linearly independent solution \(y_2 \).

Hint: Substitute \(y_2 = vy_1 \) into the differential equation and then solve for \(v \).

16. State Theorem 1.1 from the text on the existence and uniqueness of solutions to the initial value problem

\[\frac{dy}{dx} = f(x, y) \quad \text{where} \quad y(x_0) = y_0. \]