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1. Consider the initial value problem
&= f(z,1) with z(to) = xo.

(i) State the existence and uniqueness theorem showing this ordinary differential
equation has a unique solution on some open interval I containing t.

(ii) State the Runge-Kutta RK4 method for approximating this differential equa-
tion on the interval [to,T].

(iii) State the definition of the Laplace transform £{f} of a function f.
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2. Solve the initial value problem i = sin®(3t) with z(0) = 2.

3. Draw a phase diagram for the autonoumous first-order ordinary differential equation
i = 23 — 422 4 4z on the line below. Label the stationary points with a cross x and
draw arrows on the line indicating the direction in which z(t) is changing.
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4. Solve the initial value problem & — 2z =t with x(0) = 1.

d 2 2
5. Find the general solution to & u
dx x?
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6. Show that the ordinary differential equation
20y — 92° + 2y + 2%+ 1)y’ =0

is exact and find the general solution.

7. Find the general solution to the differential equation

zy — 2y = —x3y°.
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8. Consider the differential equation & + 5& + 6x = sin 3t.

(i) Find a particular solution for this differential equation.

(ii) Find the general solution to this differential equation.

(iii) Find the unique solution such that z(0) = 0 and #(0) = 2.
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9. Consider the initial value problem
y' =2y +2=¢"" with y(0)=3, ¢ (0)=-1.

Use Laplace transforms to solve for Y (s) = L{y}. Do not invert to find y.

10. Find the following inverse Laplace transforms:
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