$f(t) = \mathscr{L}^{-1}\{F(s)\}$	$F(s) = \mathscr{L}{f(t)}$	Notes
	$\frac{1}{s}$, $s > 0$	Sec. 6.1; Ex. 4
	$\frac{1}{s-a}$, $s > a$	Sec. 6.1; Ex. 5
at	$\frac{a}{s^2+a^2}, \qquad s>0$	Sec. 6.1; Ex. 6
n = positive integer	$\frac{n!}{s^{n+1}}, \qquad s > 0$	Sec. 61: Prob. 10
p > -1	$\frac{\Gamma(p+1)}{s^{p+1}}, \qquad s > 0 \right)^{\frac{1}{2}}$	
at	$\frac{s}{s^2+a^2}, \qquad s>0$	Sec. 6.1; Prob. 3
hh <i>at</i>	$\frac{a}{s^2 - a^2}, s > a $	Sec. 6.1. Proh. 4
sh <i>at</i>	$\frac{s}{s^2 - a^2}, \qquad s > a \bigg\}$	500, 0.1, 1100, 1
$t \sin bt$	$\frac{b}{(s-a)^2+b^2}, \qquad s>a$	Sec 61. Prob 5
^t cos bt	$\frac{s-a}{(s-a)^2+b^2}, \qquad s>a \bigg)$	500. 0.1, 11001 2
at, $n = \text{positive integer}$	$\frac{n!}{(s-a)^{n+1}}, \qquad s > a$	Sec. 6.1; Prob. 6
(t)	$\frac{e^{-cs}}{s}$, $s > 0$	Sec. 6.3
(t)f(t-c)	$e^{-cs}F(s)$	Sec. 6.3
f(t)	F(s-c)	Sec. 6.3
t)	$rac{1}{c} F\left(rac{s}{c} ight), \qquad c > 0$	Sec. 6.3; Prob. 4
$\int_{0}^{t} f(t-\tau)g(\tau)d\tau$	F(s)G(s)	Sec. 6.5
) (t - c)	e ^{-cs}	Sec. 6.4
(n)(t)	$s^n F(s) - s^{n-1} f(0) - \cdots - f$	(n-1)(0) Sec. 6.2
	$F^{(n)}(s)$	Sec. 6.2; Prob. 14

This page intentionally left blank.

1. Consider the initial value problem

 $\dot{x} = f(x, t)$ with $x(t_0) = x_0$.

(i) State the existence and uniqueness theorem showing this ordinary differential equation has a unique solution on some open interval I containing t_0 .

(ii) State the Runge-Kutta RK4 method for approximating this differential equation on the interval $[t_0, T]$.

(iii) State the definition of the Laplace transform $\mathcal{L}{f}$ of a function f.

2. Solve the initial value problem $\dot{x} = \sin^2(3t)$ with x(0) = 2.

3. Draw a phase diagram for the autonoumous first-order ordinary differential equation $\dot{x} = x^3 - 4x^2 + 4x$ on the line below. Label the stationary points with a cross \times and draw arrows on the line indicating the direction in which x(t) is changing.

4. Solve the initial value problem $\dot{x} - 2x = t$ with x(0) = 1.

5. Find the general solution to $\frac{dy}{dx} = \frac{x^2 + y^2}{x^2}$.

6. Show that the ordinary differential equation

$$2xy - 9x^2 + (2y + x^2 + 1)y' = 0$$

is exact and find the general solution.

7. Find the general solution to the differential equation

$$xy' - 2y = -x^3y^2.$$

- 8. Consider the differential equation $\ddot{x} + 5\dot{x} + 6x = \sin 3t$.
 - (i) Find a particular solution for this differential equation.

(ii) Find the general solution to this differential equation.

(iii) Find the unique solution such that x(0) = 0 and $\dot{x}(0) = 2$.

9. Consider the initial value problem

$$y'' - 2y' + 2 = e^{-t}$$
 with $y(0) = 3$, $y'(0) = -1$.

Use Laplace transforms to solve for $Y(s) = \mathcal{L}\{y\}$. Do *not* invert to find y.

10. Find the following inverse Laplace transforms:

(i)
$$\mathcal{L}^{-1}\left\{\frac{e^{-2s}}{s^2+s-2}\right\}$$

(ii)
$$\mathcal{L}^{-1}\left\{\frac{2s+1}{4s^2+4s+5}\right\}$$