
Math 285 Quiz 2 Review on Euler’s Method

Taylor’s Theorem. Let f : R → R be an n+ 1 times differentiable function. Then

x(t+ h) = x(t) + hẋ(t) +
h2

2!
ẍ(t) + · · ·+ hn

n!
x(n)(t) +Rn

where

Rn =

∫ t+h

t

(t+ h− s)n

n!
x(n+1)(s) ds.

Proof. By the Fundamental Theorem of Calculus

x(t+ h)− x(t) =

∫ t+h

t

ẋ(s)ds.

Integrating by parts where

u = ẋ(s), dv = ds, du = ẍ(s)ds and v = −(t+ h− s)

yields

x(t+ h)− x(t) = −(t+ h− s)ẋ(s)
∣∣∣t+h

t
+

∫ t+h

t

(t+ h− s)ẍ(s)ds

= hẋ(t) +

∫ t+h

t

(t+ h− s)ẍ(s)ds.

Integrating again by parts where

u = ẍ(s), dv = (t+ h− s)ds, du = x(3)(s)ds and v = −1
2 (t+ h− s)2

yields

x(t+ h)− x(t) = hẋ(t)− (t+ h− s)2

2
ẍ(s)

∣∣∣t+h

t
+

∫ t+h

t

(t+ h− s)2

2
x(3)(s)ds

= hẋ′(t) +
h2

2
ẍ(t) +

∫ t+h

t

(t+ h− s)2

2
x(3)(s)ds.

Repeated integration by parts finishes the proof. ///

Geometric Series Formula. Let A ∈ R. Then

An−1 +An−2 + · · ·+A+ 1 =
An − 1

A− 1
.

Proof. Let

S = An−1 +An−2 + · · ·+A+ 1

so that

AS = An +An−1 + · · ·+A2 +A.

Now, subtracting yields

(1−A)S = 1−An

from which the desired result follows. ///
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Limit of Compound Interest. We have the following limit(
1 +

r

n

)n

→ er as n → ∞.

Proof. Since (
1 +

r

n

)n

= exp
{
n log

(
1 +

r

n

)}
and the exponential function is continuous, then it is enough to show that

n log
(
1 +

r

n

)
→ r as n → ∞.

Let θ = 1/n. Then θ → 0 as n → ∞. Consequently by L’Hôpital’s rule

lim
n→∞

n log
(
1 +

r

n

)
= lim

θ→0

log(1 + rθ)

θ
= lim

θ→0

r/(1 + rθ)

1
= r.

This finishes the proof. ///

Euler’s Method. Euler’s method for approximating the solution to the ordinary differ-
ential equation initial value problem

ẋ = f(x, t) with x(t0) = x0

is given as follows. Given h > 0 define tk = t0 + kh and

xk+1 = xk + hf(xk, tk) for k = 0, 1, 2, . . . .

Then xk is an approximation of x(tk).
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Convergence of Euler’s Method. Let T > t0 and set h = (T − t0)/n. Suppose
|ẍ(t)| ≤ M and |fx(x, t)| ≤ L for all x and t ∈ [t0, T ]. Then xn → x(T ) as h → 0.

Proof. Using Taylor’s theorem

xk+1 − x(tk+1) = xk + hf(xk, tk)−
{
x(tk) + hf(x(tk), tk) +

∫ t+h

t

(t+ h− s)ẍ(s)ds

}
.

By the Fundamental Theorem of Calculus for a < b we have

|f(b, t)− f(a, t)| =
∣∣∣∣ ∫ b

a

fx(r, t)dr

∣∣∣∣ ≤ ∫ b

a

|fx(r, t)|dr ≤
∫ b

a

Ldr = L|b− a|.

Therefore
|f(xk, tk)− f(x(tk), tk)| ≤ L|xk − x(tk)|

Similarly∣∣∣∣ ∫ t+h

t

(t+ h− s)ẍ(s)ds

∣∣∣∣ ≤ ∫ t+h

t

(t+ h− s)Mds = − (t+ h− s)2

2
M

∣∣∣t+h

t
=

h2M

2
.

It follows that

|xk+1 − x(tk+1)| ≤ |xk − x(tk)|+ hL|xk − x(tk)|+
h2M

2

= A|xk − x(tk)|+
h2M

2
where A = 1 + hL.

When k = 0 we obtain

|x1 − x(t1)| ≤ A|x0 − x(t0)|+
h2M

2
=

h2M

2
since x(t0) = x0.

When k = 1 we obtain

|x2 − x(t2)| ≤ A|x1 − x(t1)|+
h2M

2
≤ A

{h2M

2

}
+

h2M

2
= (A+ 1)

h2M

2
.

When k = 2 we obtain

|x3 − x(t3)| ≤ A|x2 − x(t2)|+
h2M

2
≤ (A2 +A+ 1)

h2M

2
.

Continuing this pattern and applying the geometric series formula yields

|xn − x(tn)| ≤ (An−1 +An−2 + · · ·+A+ 1)
h2M

2
=

An − 1

A− 1

h2M

2
.

Therefore, using the limit of compound interest we have

|xn − x(tn)| ≤
(1 + hL)n − 1

(1 + hL)− 1

h2M

2
=

M

2L

(
(1 + hL)n − 1

)
h

=
M

2L

{(
1 +

T − t0
n

L
)n

− 1
}
h

→ M

2L

{
e(T−t0)L − 1

}
· 0 = 0 as h → 0.

This finishes the proof. ///


