Math 285 Quiz 2 Review on Euler’s Method

Taylor’s Theorem. Let f: R — R be an n + 1 times differentiable function. Then

2

) h™
(1) 4+ e (1) + R

z(t+h) = x(t) + ha(t) + g:i:

where

R, = t+hwx(n+l)(s)ds
S n! '

Proof. By the Fundamental Theorem of Calculus

t+h
x(t+h)—x(t) = / x(s)ds.
t
Integrating by parts where
u=x(s), dv=ds, du=1i(s)ds and v=—(t+h—2s)
yields

t+h

t+h
z(t+h) —x(t) = —(t+ h — s)i(s) + /t (t+h—s)i(s)ds

t+h t
= ha(t) + / (t+ h — s)i(s)ds.
Integrating again by parts where t
uw=7i(s), dv=(t+h—s)ds, du=2%(s)ds and v= —L(t+h—s)?
yields

2t 4 ) — 2(t) = hir(t) — EFP /Hh (=57 ®(s)as

5 2], 2

h? ot +h—s)?
:h:i;’(t)+7§3(t)+ / %x(g)(s)ds.
t

Repeated integration by parts finishes the proof.
Geometric Series Formula. Let A € R. Then

A" —1
A AP 2 L A+ = )
+ ot At L= S
Proof. Let
S=A""14+ A"+ + A+1
so that

AS = A"+ A" L4 A%+ A
Now, subtracting yields
(1-A4)S=1-A"

from which the desired result follows.
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Limit of Compound Interest. We have the following limait

r n
(1+—> — e as n — 00.
n

(1+5)" =exp {ntog (1+ 1)}

and the exponential function is continuous, then it is enough to show that

Proof. Since

nlog(l—l—z)—)r as n — 00.
n

Let # = 1/n. Then # — 0 as n — oo. Consequently by L’Hopital’s rule

log(1 0 1 0
lim nlog (1+ z) _ i g +78) . r/A4rf)
n—oo n 6—0 0 6—0 1
This finishes the proof. ///

Euler’s Method. Euler’s method for approximating the solution to the ordinary differ-
ential equation initial value problem

T = f(z,1) with x(tg) = o
is given as follows. Given h > 0 define t; = tq + kh and
Tpy1 = g + hf(z, tg) for k=0,1,2,....

Then xj, is an approximation of x(ty).
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Convergence of Euler’s Method. Let 7' > tg and set h = (T — tp)/n. Suppose
|Z(t)| < M and |f,(x,t)| < L for all z and ¢ € [ty,T]. Then z,, — z(T) as h — 0.

Proof. Using Taylor’s theorem
t+h
Tpy1 — (tpr1) = xp + hf(zg, tg) — {x(tk) + hf(x(ty), tx) + / (t+h— s)i(s)ds}.
t
By the Fundamental Theorem of Calculus for a < b we have

b b b
|f(b,t)—f(a,t)|=‘/ fo(r,t)dr §/ |f$(7“,t)|dr§/ Ldr = L|b — al.

Therefore
|f(zr,te) — f(x(te), tr)| < Llzg — x(ty)]
Similarly
t+h t+h 2 2
t+h— t+h  hEM
/ (t+h —s)i(s)ds S/ (t-l—h—s)MdSZ—H——S)M = :
¢ ¢ 2 t 2
It follows that
h2M
[Zrr1 — 2(ter1)| <ok —2(te)| + hL|xk — 2(te)| + 5
h2M
= Alzp — x(tx)| + 5 where A=1+hL.
When k£ = 0 we obtain
h2M h2M
|1 — x(t1)| < Alzo — z(to)| + 5 = 3 since z(to) = xo.
When k£ =1 we obtain
h2M h2M h2M h2M
22— a(ts)] < Aler —a(h)| + 5 < A{ =+ o = (A+ )T
When k = 2 we obtain
h2M h2M

|£l?3 — $(t3)’ < A‘%Q — (13(152)‘ + < (A2 + A+ 1) 5

Continuing this pattern and applying the geometric series formula yields
WM A" —1h*M

_ < n—1 n—2 A
[on = 2(tn)| < (A" H AT A1) T 5

Therefore, using the limit of compound interest we have

(1+hL)*—1R2M M .

M T —ty \n

_ 20 L) —1}h
2L{< + n
M

T—to)L
—>i{e( PE_11.0=0 as h—0.

This finishes the proof. ///




