1. Find the general solution to the Bernoulli differential equation
\[\dot{x} + 2x = tx^3. \]

2. Find the unique solution to the initial value problem
\[\dot{x} + 2x = tx^3, \quad x(t_0) = x_0 \]
when \(t_0 = 0 \) and \(x_0 = 4 \).

3. Show that the solution found above blows up sometime between \(t = 0.4 \) and \(0.5 \).

4. Solve \(8t + 2 = e^{4t} \) to 4 significant digits to find the approximate time of blow up.

5. Use Euler’s method
\[x_{k+1} = x_k + hf(x_k, t_k) \quad \text{for} \quad k = 0, 1, \ldots, n - 1 \]
with \(h = 0.4/n \) and \(t_k = kh \) to approximate \(x(0.4) \). Compute the error
\[E_{\text{Euler}} = |x_n - x(0.4)| \]
for values of \(n \) equal to 5, 10, 20, 40 and 80.

6. Use the Runge-Kutta RK4 method
\[
\begin{align*}
 f_1 &= f(x_k, t_k) \\
 f_2 &= f(x_k + \frac{1}{2}hf_1, t_k + \frac{1}{2}h) \\
 f_3 &= f(x_k + \frac{1}{2}hf_2, t_k + \frac{1}{2}h) \\
 f_4 &= f(x_k + hf_3, t_k + h) \\
 x_{k+1} &= x_k + \frac{1}{6}(f_1 + 2f_2 + 2f_3 + f_4)
\end{align*}
\]
to approximate \(x(0.4) \). Compute the error
\[E_{\text{RK4}} = |x_n - x(0.4)| \]
for values of \(n \) equal to 5, 10, 20, 40 and 80.

7. Comment on the accuracy of the above numerical approximations.

8. [Extra Credit 3] Approximate \(x(0.2) \) where \(x(t) \) is the unique solution to
\[\dot{x} - 4\sin x = tx^3, \quad x(0) = 4. \]
This solution also blows up at some time \(t > 0 \). Numerically approximate the time of blow up to 4 significant digits.