
Math 285 Homework 4 Version A

1. Find the general solution to the Bernoulli differential equation

ẋ+ 2x = tx3.

Solution. Since n = 3 substitute u = y1−n = x−2 to obtain

u̇ = −2x−3ẋ = −2x−3(−2x+ tx3) = 4x−2 − 2t = 4u− 2t.

This is a linear equation with integrating factor I = e−4t. Thus

d

dt
(ue−4t) = −2te−4t.

Integration by parts obtains

ue−4t = −2

∫
te−4tdt =

1

2

∫
t de−4t

=
1

2

{
te−4t −

∫
e−4tdt

}
=

1

2

{
te−4t +

1

4
e−4t

}
+ C

Therefore

u =
t

2
+

1

8
+ Ce4t =

4t+ 1 + Ce4t

8

and consequently the general solution is

y =
1√
u
=

2
√
2√

4t+ 1 + Ce4t
.
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2. Find the unique solution to the initial value problem

ẋ+ 2x = tx3, x(t0) = x0

when t0 = 0 and x0 = 4.

Solution. Solve for the constant in the general solution. Since

y(0) =
2
√
2√

4 · 0 + 1 + Ce4·0
=

2
√
2√

1 + C
= 4.

Therefore

1 + C =
1

2

and consequently the unique solution is

y =
2
√
2√

4t+ 1− (1/2)e4t
=

4√
8t+ 2− e4t

.

3. Show that the solution found above blows up sometime between t = 0.4 and 0.5.

Solution. The solution blows up when the function q(t) = 8t + 2 − e4t that is inside the
square root in the denominator is zero. Since q is continuous and

q(0.4) = 8 · 0.4 + 2− e4·0.4 ≈ 0.2470 > 0

and
q(0.5) = 8 · 0.5 + 2− e4·0.5 ≈ −1.3891 < 0,

then the intermediate value theorem implies there is some point c between 0.4 and 0.5
where q(c) = 0. Consequently, the solution y blows up at t = c.
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4. Solve 8t+ 2 = e4t to 4 significant digits to find the approximate time of blow up.

Solution. There are many ways to find the point c such that q(c) = 0. A good method is
Newton’s method

ci+1 = ϕ(ci) where ϕ(t) = t+
q(t)

q′(t)
= t+

2 + 8t− e4t

8− 4e4t
.

with an initial guess of c0 = 0.45. While this calculation may be done with a hand
calculator, the Matlab script

1 phi=@(t)t-(2+8*t-exp(4*t))/(8-4*exp(4*t));

2 c(1)=0.45;

3 for i=1:5

4 c(i+1)=phi(c(i));

5 end;

6 c

can also be used. The output is

c =

0.45000 0.42224 0.41961 0.41959 0.41959 0.41959

which shows that c ≈ 0.4196 to 4 significant digits.
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5. Use Euler’s method

xk+1 = xk + hf(xk, tk) for k = 0, 1, . . . , n− 1

with h = 0.4/n and tk = kh to approximate x(0.4). Compute the error

EEuler =
∣∣xn − x(0.4)

∣∣
for values of n equal to 5, 10, 20, 40 and 80.

Solution. This calculation can be running the Matlab script developed in class once for
each value of n. The following script allows all the calculations to be done at once.

1 y=@(t)4/sqrt(8*t+2-exp(4*t));

2 f=@(x,t)t*x^3-2*x;

3 t(1)=0;

4 x(1)=4;

5 T=0.4;

6 i=1;

7 for n=[5 10 20 40 80]

8 h=T/n;

9 for k=1:n

10 x(k+1)=x(k)+h*f(x(k),t(k));

11 t(k+1)=t(1)+h*k;

12 end;

13 N(i)=n;

14 X(i)=x(n+1);

15 E(i)=abs(x(n+1)-y(T));

16 i=i+1;

17 end;

18 [N

19 X

20 E]

The output is

ans =

5.0000 10.0000 20.0000 40.0000 80.0000

3.1534 3.9792 4.8328 5.6884 6.4641

4.8956 4.0698 3.2162 2.3606 1.5849

where the first row gives the values for n, the second gives the approximation xn and the
third row gives the corresponding error EEuler. Compared to the true solution

x(0.4) =
4√

8 · 0.4 + 2− e4·0.4
≈ 8.0490

the errors are all relatively large. In particular, none of the numerical approximations are
correct even in the first digit.
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6. Use the Runge-Kutta RK4 method

f1 = f(xk, tk)

f2 = f(xk + 1
2hf1, tk + 1

2h)

f3 = f(xk + 1
2hf2, tk + 1

2h)

f4 = f(xk + hf3, tk + h)

xk+1 = xk + 1
6h(f1 + 2f2 + 2f3 + f4)

to approximate x(0.4). Compute the error

ERK4 =
∣∣xn − x(0.4)

∣∣
for values of n equal to 5, 10, 20, 40 and 80.

Solution. After replacing Euler’s method by the RK4 method in the previous Matlab script
we obtain

1 y=@(t)4/sqrt(8*t+2-exp(4*t));
2 f=@(x,t)t*x^3-2*x;
3 t(1)=0;
4 x(1)=4;
5 T=0.4;
6 i=1;
7 for n=[5 10 20 40 80]
8 h=T/n;
9 for k=1:n

10 f1=f(x(k),t(k));
11 f2=f(x(k)+0.5*h*f1,t(k)+0.5*h);
12 f3=f(x(k)+0.5*h*f2,t(k)+0.5*h);
13 f4=f(x(k)+h*f3,t(k)+h);
14 x(k+1)=x(k)+(h/6)*(f1+2*f2+2*f3+f4);
15 t(k+1)=t(1)+h*k;
16 end;
17 N(i)=n;
18 X(i)=x(n+1);
19 E(i)=abs(x(n+1)-y(T));
20 i=i+1;
21 end;
22 [N
23 X
24 E]

with output

ans =

5.0000e+00 1.0000e+01 2.0000e+01 4.0000e+01 8.0000e+01
7.7112e+00 7.9816e+00 8.0415e+00 8.0484e+00 8.0489e+00
3.3778e-01 6.7372e-02 7.5093e-03 5.2910e-04 2.9067e-05

The error is much smaller. In particular, all approximations are correct to at least one
significant digit and when n = 80 the approximation is good to 5 significant digits.
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7. Comment on the accuracy of the above numerical approximations.

Solution. Expanding upon the commentary above we recall that the errors in the Euler
method were much larger for the same values of n. However, the steps for the RK4 method
require 4 evaluations of f(x, t) and are, therefore, approximately 4 times more expensive
than the Euler method. Adjusted for similar computational work, it is more appropriate
to compare

EEuler = 1.5849 for n = 80

to
ERK4 = 0.0075093 for n = 20.

Either method requires 80 evaluations of f(x, t). However, for this amount of computa-
tional work, the RK4 method is more than 200 times more accurate than the Euler method.
As greater accuracy is required, the advantages of RK4 over Euler’s method become even
more pronounced.
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8. [Extra Credit 3] Approximate x(0.2) where x(t) is the unique solution to

ẋ− 4 sinx = tx3, x(0) = 4.

This solution also blows up at some time t > 0. Numerically approximate the time
of blow up to 4 significant digits.

Solution. Since | sinx| ≤ 1 we know that any solution satisfies

ẋ ≥ tx3 − 4.

Suppose there is t1 ∈ (0.25, 0.5) such that x1 = x(t1) ≥ 201. Then

tx ≥ 50.25 > 4 for t = t1.

By continuity there is δ > 0 such that

tx3 − 4 = tx3 − tx+ tx− 4 > tx3 − tx = tx(x2 − 1) for t ∈ [t1, t1 + δ].

Integrating for t ∈ [t1, t1 + δ] we have∫ x

x1

dx

x(x− 1)(x+ 1)
≥

∫ t

t1

t dt.

Since
1

x(x− 1)(x+ 1)
=

1

2(x+ 1)
+

1

2(x− 1)
− 1

x

then
1

2
log

x+ 1

x1 + 1
+

1

2
log

x− 1

x1 − 1
− log

x

x1
≥ 1

2
(t2 − t21)

and consequently

1− x−2

1− x−2
1

≥ exp(t2 − t21) for t ∈ [t1, t1 + δ].

Since this inequality implies x is strictly increasing for t ≥ t1, then the inequality must
hold until the time of blowup. Let t∗ be the time of blowup. Thus,

x2 ≥ 1

1− (1− x−2
1 ) exp(t2 − t21)

for t ∈ [t1, t∗).

Since the denominator on the right hand side goes to zero when

(1− x−2
1 ) exp(t2 − t21) = 1

this implies

t∗ − t1 ≤ − log(1− x−2
1 )

t∗ + t1
<

0.000025

0.5
= 0.00005.
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Consequently |t∗ − t1| < 0.00005. In particular t∗ ≈ t1 to 4 significant digits. It remains
to numerically find a point t1 such that x ≥ 201 when t = t1. The Matlab script

1 f=@(x,t)t*x^3+4*sin(x);

2 t(1)=0;

3 x(1)=4;

4 T=1;

5 i=1;

6 n=80000;

7 h=T/n;

8 for k=1:n

9 f1=f(x(k),t(k));

10 f2=f(x(k)+0.5*h*f1,t(k)+0.5*h);

11 f3=f(x(k)+0.5*h*f2,t(k)+0.5*h);

12 f4=f(x(k)+h*f3,t(k)+h);

13 x(k+1)=x(k)+(h/6)*(f1+2*f2+2*f3+f4);

14 t(k+1)=t(1)+h*k;

15 if (x(k+1)>=201)

16 [t(k+1),x(k+1)]

17 exit;

18 end;

19 end;

produces the output

ans =

0.28590 228.70080

which shows that x(0.2859) ≈ 228.7008. Since 0.2859 ∈ (0.25, 0.5), the point of blowup

t∗ ≈ 0.2859

to 4 significant digits.


