Math 285 Sample Final Version A

Instructions. This exam consists of two parts. The first part will be graded with partial credit based on how well you explain your answer; the second part is similar to the computer graded homework with limited partial credit. On the second part, only the answers you write inside the boxes will be graded.

1. What is a differential equation?
2. What is a Bernoulli differential equation and what substitution helps solve it?
3. What does it mean for the functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ to be linearly dependent?
4. State the definition of the Laplace transform.

Math 285 Sample Final Version A
5. Find the solution $y(x)$ to the differential equation

$$
x \frac{d y}{d x}-4 y=x^{6} e^{x} \quad \text { such that } \quad y(1)=2
$$

Math 285 Sample Final Version A

6. Solve the differential equation

$$
\frac{d y}{d x}=e^{5 x+6 y} \quad \text { such that } \quad y(0)=0
$$

by separation of variables.

$$
y(x)=\square
$$

7. Determine whether the differential equation

$$
\left(2 x y^{2}-6\right) d x+\left(2 x^{2} y+3\right) d y=0
$$

is exact. If it is exact, solve it; if it is not exact, write not in the box.
8. A tank contains 90 liters of fluid in which 20 grams of salt is dissolved. Brine containing 1 gram of salt per liter is then pumped into the tank at a rate of 3 $\mathrm{L} / \mathrm{min}$; the well-mixed solution is pumped out at the same rate. Find the number $A(t)$ of grams of salt in the tank at time t.

$$
A(T)=\square \text { grams. }
$$

9. Determine whether the set of functions

$$
f_{1}(x)=x, \quad f_{2}(x)=x^{2} \quad \text { and } \quad f_{3}(x)=4 x-7 x^{2}
$$

is linearly independent on the interval $(-\infty, \infty)$.
(A) linearly dependent
(B) linearly independent
10. Find the general solution of the higher-order differential equation

$$
y^{\prime \prime \prime}-9 y^{\prime \prime}+15 y^{\prime}+25 y=0 .
$$

The general solution is

$$
y(t)=\square
$$

Math 285 Sample Final Version A
11. Find the general solution to the differential equation

$$
y^{\prime \prime}+4 y=2 \sin 2 x
$$

using undetermined coefficients. The general solution is

$$
y(t)=\square
$$

12. Solve the differential equation

$$
x^{2} y^{\prime \prime}+7 x y^{\prime}+9 y=0 \quad \text { for } \quad x>0
$$

The general solution for $x>0$ is

$$
y(x)=\square
$$

13. Use the table of Laplace transforms attached to find $\mathcal{L}\{f(t)\}(s)$ where

$$
\begin{gathered}
f(t)=4 t^{2}-5 \sin 2 t . \\
\mathcal{L}\{f(t)\}(s)=\square
\end{gathered}
$$

14. Use the table of Laplace transforms attached to find the inverse Laplace transform

$$
\mathcal{L}^{-1}\left\{\frac{(s+1)^{3}}{s^{5}}\right\}(t)
$$

Write your answer as a function of t.

Math 285 Sample Final Version A

15. Use the Laplace transform to solve the initial-value problem

$$
y^{\prime}+4 y=e^{6 t} \quad \text { such that } \quad y(0)=2
$$

The answer is

$$
y(t)=\square
$$

16. Find the Laplace transform

$$
F(s)=\mathcal{L}\left\{t\left(e^{t}+e^{3 t}\right)^{2}\right\}(s)
$$

The Laplace transform is

$$
F(s)=\square
$$

17. Find the inverse Laplace transform

$$
f(t)=\mathcal{L}^{-1}\left\{\frac{e^{-s}}{s(s+1)}\right\}(t)
$$

The inverse Laplace transform is

$$
f(t)=\square
$$

18. Write the function

$$
f(t)= \begin{cases}0 & \text { for } 0 \leq t<1 \\ t^{2} & \text { for } t \geq 1\end{cases}
$$

in terms of unit step functions. Find the Laplace transform $F(s)=\mathcal{L}\{f(t)\}(s)$.

$$
F(s)=\square
$$

19. Use the convolution theorem to evaluate the Laplace transform

$$
F(s)=\mathcal{L}\left\{\int_{0}^{t} \tau e^{t-\tau} d \tau\right\}(s)
$$

The Laplace transform is

$$
F(s)=\square
$$

Math 285 Sample Final Version A
20. Use the Laplace transform to solve the initial-value problem

$$
y^{\prime}-4 y=\delta(t-5) \quad \text { such that } \quad y(0)=0
$$

The solution is

$$
y(t)=\square
$$

21. Suppose

$$
A=\left[\begin{array}{cc}
1 & 6 \\
7 & 11 \\
10 & 12
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ccc}
-6 & 8 & -3 \\
1 & -3 & 2
\end{array}\right]
$$

Find the products

22. Consider the matrix

$$
A=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
1 & 3 & 1 \\
0 & 4 & -1
\end{array}\right]
$$

with eigenvalues

$$
\lambda_{1}=4, \quad \lambda_{2}=-2 \quad \text { and } \quad \lambda_{3}=-1
$$

and corresponding eigenvectors

$$
K_{1}=\left[\begin{array}{l}
1 \\
5 \\
4
\end{array}\right], \quad K_{2}=\left[\begin{array}{c}
1 \\
-1 \\
4
\end{array}\right] \quad \text { and } \quad K_{3}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

Find the general solution of the matrix differential equation $X^{\prime}=A X$.

$$
X(t)=
$$

TABLE OF LAPLACE TRANSFORMS

$f(t)$	$\mathscr{L}\{f(t)\}=F(s)$
1. 1	$\underline{1}$
	s
	$\frac{1}{5}$
2. t	\bar{s}
3. t^{n}	$\frac{n!}{s^{n+1}}, \quad n$ a positive integer
4. $t^{-1 / 2}$	$\sqrt{\frac{\pi}{s}}$
5. $t^{1 / 2}$	$\frac{\sqrt{\pi}}{2 s^{3 / 2}}$
6. t^{α}	$\frac{\Gamma(\alpha+1)}{s^{\alpha+1}}, \quad \alpha>-1$
7. $\sin k t$	$\frac{k}{s^{2}+k^{2}}$
8. $\cos k t$	$\frac{s}{s^{2}+k^{2}}$
9. $\sin ^{2} k t$	$\frac{2 k^{2}}{s\left(s^{2}+4 k^{2}\right)}$
10. $\cos ^{2} k t$	$\frac{s^{2}+2 k^{2}}{s\left(s^{2}+4 k^{2}\right)}$
11. $e^{a t}$	$\frac{1}{s-a}$
12. $\sinh k t$	$\frac{k}{s^{2}-k^{2}}$
13. $\cosh k t$	$\frac{s}{s^{2}-k^{2}}$
14. $\sinh ^{2} k t$	$\frac{2 k^{2}}{s\left(s^{2}-4 k^{2}\right)}$
15. $\cosh ^{2} k t$	$\frac{s^{2}-2 k^{2}}{s\left(s^{2}-4 k^{2}\right)}$
16. $t e^{a t}$	$\frac{1}{(s-a)^{2}}$
17. $t^{n} e^{a t}$	$\frac{n!}{(s-a)^{n+1}}, \quad n$ a positive integer
18. $e^{a t} \sin k t$	$\frac{k}{(s-a)^{2}+k^{2}}$
19. $e^{a t} \cos k t$	$\frac{s-a}{(s-a)^{2}+k^{2}}$

$f(t)$	$\mathscr{L}\{f(t)\}=F(s)$
20. $e^{a t} \sinh k t$	$\frac{k}{(s-a)^{2}-k^{2}}$
21. $e^{a t} \cosh k t$	$\frac{s-a}{(s-a)^{2}-k^{2}}$
22. $t \sin k t$	$\frac{2 k s}{\left(s^{2}+k^{2}\right)^{2}}$
23. $t \cos k t$	$\frac{s^{2}-k^{2}}{\left(s^{2}+k^{2}\right)^{2}}$
24. $\sin k t+k t \cos k t$	$\frac{2 k s^{2}}{\left(s^{2}+k^{2}\right)^{2}}$
25. $\sin k t-k t \cos k t$	$\frac{2 k^{3}}{\left(s^{2}+k^{2}\right)^{2}}$
26. $t \sinh k t$	$\frac{2 k s}{\left(s^{2}-k^{2}\right)^{2}}$
27. $t \cosh k t$	$\frac{s^{2}+k^{2}}{\left(s^{2}-k^{2}\right)^{2}}$
28. $\frac{e^{a t}-e^{b r}}{a-b}$	$\frac{1}{(s-a)(s-b)}$
29. $\frac{a e^{a t}-b e^{b t}}{a-b}$	$\frac{s}{(s-a)(s-b)}$
30. $1-\cos k t$	$\frac{k^{2}}{s\left(s^{2}+k^{2}\right)}$
31. $k t-\sin k t$	$\frac{k^{3}}{s^{2}\left(s^{2}+k^{2}\right)}$
32. $\frac{a \sin b t-b \sin a t}{a b\left(a^{2}-b^{2}\right)}$	$\frac{1}{\left(s^{2}+a^{2}\right)\left(s^{2}+b^{2}\right)}$
33. $\frac{\cos b t-\cos a t}{a^{2}-b^{2}}$	$\frac{s}{\left(s^{2}+a^{2}\right)\left(s^{2}+b^{2}\right)}$
34. $\sin k t \sinh k t$	$\frac{2 k^{2} s}{s^{4}+4 k^{4}}$
35. $\sin k t \cosh k t$	$\frac{k\left(s^{2}+2 k^{2}\right)}{s^{4}+4 k^{4}}$
36. $\cos k t \sinh k t$	$\frac{k\left(s^{2}-2 k^{2}\right)}{s^{4}+4 k^{4}}$
37. $\cos k t \cosh k t$	$\frac{s^{3}}{s^{4}+4 k^{4}}$
38. $J_{0}(k t)$	$\frac{1}{\sqrt{s^{2}+k^{2}}}$

$f(t)$	$\mathscr{L}\{f(t)\}=F(s)$
39. $\frac{e^{b t}-e^{a t}}{t}$	$\ln \frac{s-a}{s-b}$
40. $\frac{2(1-\cos k t)}{t}$	$\ln \frac{s^{2}+k^{2}}{s^{2}}$
41. $\frac{2(1-\cosh \dot{k} t)}{t}$	$\ln \frac{s^{2}-k^{2}}{s^{2}}$
42. $\frac{\sin a t}{t}$	$\arctan \left(\frac{a}{s}\right)$
43. $\frac{\sin a t \cos b t}{t}$	$\frac{1}{2} \arctan \frac{a+b}{s}+\frac{1}{2} \arctan \frac{a-b}{s}$
44. $\frac{1}{\sqrt{\pi t}} e^{-a^{2} / 4 t}$	$\frac{e^{-a \sqrt{s}}}{\sqrt{s}}$
45. $\frac{a}{2 \sqrt{\pi t^{3}}} e^{-a^{2} / 4 t}$	$e^{-a \sqrt{s}}$
46. $\operatorname{erfc}\left(\frac{a}{2 \sqrt{t}}\right)$	$\frac{e^{-a \sqrt{s}}}{s}$
47. $2 \sqrt{\frac{t}{\pi}} e^{-a^{2} / 4 t}-a \operatorname{erfc}\left(\frac{a}{2 \sqrt{t}}\right)$	$\frac{e^{-a \sqrt{s}}}{s \sqrt{s}}$
48. $e^{a b} e^{b^{2} t} \operatorname{erfc}\left(b \sqrt{t}+\frac{a}{2 \sqrt{t}}\right)$	$\frac{e^{-a \sqrt{s}}}{\sqrt{s}(\sqrt{s}+b)}$
$\text { 49. } \begin{gathered} -e^{a b} e^{b^{2} t} \operatorname{erfc}\left(b \sqrt{t}+\frac{a}{2 \sqrt{t}}\right) \\ +\operatorname{erfc}\left(\frac{a}{2 \sqrt{t}}\right) \end{gathered}$	$\frac{b e^{-a \sqrt{s}}}{s(\sqrt{s}+b)}$
50. $e^{a t} f(t)$	$F(s-a)$
- 51. $U(t-a)$	$\frac{e^{-a s}}{s}$
52. $f(t-a) \mathscr{U}(t-a)$	$e^{-a s} F(s)$
53. $g(t) U(t-a)$	$e^{-a s} \mathscr{L}\{g(t+a)\}$
54. $f^{(n)}(t)$	$s^{n} F(s)-s^{(n-1)} f(0)-\cdots-f^{(n-1)}(0)$
55. $t^{n} f(t)$	$(-1)^{n} \frac{d^{n}}{d s^{n}} F(s)$
56. $\int_{0}^{t} f(\tau) g(t-\tau) d \tau$	$F(s) G(s)$
57. $\delta(t)$	1
58. $\delta\left(t-t_{0}\right)$	$e^{-s t_{0}}$

