Abel's Summation by Parts Formula

Given two sequences $\left(a_{n}\right)_{n \in \mathrm{~N}}$ and $\left(b_{n}\right)_{n \in \mathrm{~N}}$ of real numbers consider the partial sums

$$
A_{n}=\sum_{k=1}^{n} a_{k} \quad \text { and } \quad B_{n}=\sum_{k=1}^{n} b_{k}
$$

Further define $A_{0}=0$ and $B_{0}=0$. Thus,

$$
A_{k}-A_{k-1}=a_{k} \quad \text { and } \quad B_{k}-B_{k-1}=b_{k} \quad \text { for } \quad k=1,2, \ldots
$$

Now consider the difference $A_{k} B_{k}-A_{k-1} B_{k-1}$ of the products. Thus,

$$
\begin{aligned}
A_{k} B_{k}-A_{k-1} B_{k-1} & =A_{k} B_{k}-A_{k} B_{k-1}+A_{k} B_{k-1}-A_{k-1} B_{k-1} \\
& =A_{k}\left(B_{k}-B_{k-1}\right)+\left(A_{k}-A_{k-1}\right) B_{k-1}=A_{k} b_{k}+a_{k} B_{k-1} .
\end{aligned}
$$

Given $m, n \in \mathrm{~N}$ with $m<n$, sum both sides from $k=m$ to n. Since the left side telescopes we have

$$
\sum_{k=m}^{n}\left(A_{k} B_{k}-A_{k-1} B_{k-1}\right)=A_{n} B_{n}-A_{m-1} B_{m-1}
$$

Therefore

$$
A_{n} B_{n}-A_{m-1} B_{m-1}=\sum_{k=m}^{n} A_{k} b_{k}+\sum_{k=m}^{n} a_{k} B_{k-1}
$$

This formula should be compared to the usual integration by parts formula. Let F and G be differentiable functions on $[a, b]$ with derivatives $F^{\prime}=f$ and $G^{\prime}=g$. Then by the product rule

$$
(F G)^{\prime}=F G^{\prime}+F^{\prime} G=F g+f G
$$

Integrate both sides from a to b. The Fundamental Theorem of Calculus Part I implies that

$$
\int_{a}^{b}(F G)^{\prime}=F(b) G(b)-F(a) G(a)
$$

Therefore,

$$
F(b) G(b)-F(a) G(a)=\int_{a}^{b} F(x) g(x) d x+\int_{a}^{b} f(x) G(x) d x
$$

Comparing this formula to one above we see that sums play the role of integrals, a_{k} plays the role of the derivative of A_{k}, and similarly b_{k} is like the derivative of B_{k}.

Finally, the summation by parts formula in the book follows by taking $m=1$ and using $A_{0}=0$ and $B_{0}=0$ to obtain

$$
A_{n} B_{n}=\sum_{k=1}^{n} A_{k} b_{k}+\sum_{k=1}^{n} a_{k} B_{k-1}
$$

and then identifying the books notation b_{n+1} with our B_{n}.

