Lemma 0.1. Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be continuously differentiable with $D f(a)$ non-singular for some point $a \in \mathbf{R}^{n}$. For every $\epsilon>0$ there exists $r>0$ such that $B_{r}(f(a)) \subseteq f\left(B_{\epsilon}(a)\right)$.
Proof: Choose $\delta>0$ such that $\delta<\epsilon$ and

$$
\|x-a\|<\delta \quad \text { implies } \quad\left\|D f(a)^{-1}\right\|\|D f(x)-D f(a)\|<1 / 2 .
$$

Set $r=\frac{1}{2} \delta /\left\|D f(a)^{-1}\right\|$. For $y \in B_{r}(f(a))$ we solve for x such that $f(x)=y$ using a pseudo Newton method. Let $g(x)=f(x)-y$ and define

$$
x_{0}=a \quad \text { and } \quad x_{k+1}=x_{k}-D g(a)^{-1} g\left(x_{k}\right) .
$$

Claim that $\left\|x_{k}-a\right\| \leq \delta$ and $\left\|x_{k+1}-x_{k}\right\| \leq \delta / 2^{k}$ for all $k \in \mathbf{N}$. We prove this claim by induction. For $k=0$ we have $\left\|x_{0}-a\right\|=0<\delta$ and

$$
\left\|x_{1}-x_{0}\right\|=\left\|x_{0}-D g(a)^{-1} g\left(x_{0}\right)-x_{0}\right\| \leq\left\|D g(a)^{-1}\right\|\|f(a)-y\| \leq\left\|D g(a)^{-1}\right\| r=\delta / 2
$$

For the induction hypothesis suppose that the claim holds for $k \leq K$. Then

$$
\left\|x_{K+1}-a\right\| \leq \sum_{k=0}^{K}\left\|x_{k+1}-x_{k}\right\| \leq \delta \sum_{k=0}^{K} \frac{1}{2^{k+1}}=\delta\left(1-1 / 2^{k+1}\right)<\delta
$$

Let $v_{K}=g\left(x_{K+1}\right)-g\left(x_{K}\right)-D g(a)\left(x_{K+1}-x_{K}\right)$. By the intermediate value theorem there is c_{K} lying on the line segment between x_{K+1} and x_{K} such that

$$
\left(g\left(x_{K+1}\right)-g\left(x_{K}\right)\right) \cdot v_{K}=D g\left(c_{K}\right)\left(x_{K+1}-x_{K}\right) \cdot v_{K} .
$$

Therefore,

$$
\begin{aligned}
\left\|v_{K}\right\|^{2} & =v_{K} \cdot v_{K}=\left(g\left(x_{K+1}\right)-g\left(x_{K}\right)-D g(a)\left(x_{K+1}-x_{K}\right)\right) \cdot v_{K} \\
& =\left(D g\left(c_{K}\right)-D g(a)\right)\left(x_{K+1}-x_{K}\right) \cdot v_{K}
\end{aligned}
$$

implies by the Cauchy inequality that

$$
\left\|g\left(x_{K+1}\right)-g\left(x_{K}\right)-D g(a)\left(x_{K+1}-x_{K}\right)\right\| \leq\left\|D g\left(c_{K}\right)-D g(a)\right\|\left\|x_{K+1}-x_{K}\right\| .
$$

Since $\left\|c_{K}-a\right\| \leq\left\|x_{K+1}-a\right\|<\delta$ then

$$
\begin{aligned}
\left\|x_{K+2}-x_{K+1}\right\| & \leq\left\|x_{K+1}-D g(a)^{-1} g\left(x_{K+1}\right)-x_{K}+D g(a)^{-1} g\left(x_{K}\right)\right\| \\
& \leq\left\|D g(a)^{-1}\right\|\left\|g\left(x_{K+1}\right)-g\left(x_{K}\right)-D g(a)\left(x_{K+1}-x_{K}\right)\right\| \\
& \leq\left\|D g(a)^{-1}\right\|\left\|D g\left(c_{K}\right)-D g(a)\right\|\left\|x_{K+1}-x_{K}\right\| \\
& \leq \frac{1}{2}\left\|x_{K+1}-x_{K}\right\| \leq \delta / 2^{K+1} .
\end{aligned}
$$

This completes the induction and proves the claim. We now show that x_{k} is a Cauchy sequence. Let $p, q \in \mathbf{N}$ with $p>q$. Then

$$
\left\|x_{p}-x_{q}\right\| \leq \sum_{k=q}^{p-1}\left\|x_{k+1}-x_{k}\right\| \leq \delta \sum_{k=q}^{p-1} \frac{1}{2^{k}}=2 \delta\left(\frac{1}{2^{q}}-\frac{1}{2^{p}}\right) \rightarrow 0 \text { as } p, q \rightarrow \infty
$$

Thus, there is $x \in \mathbf{R}^{n}$ such that $x_{k} \rightarrow x$ as $k \rightarrow \infty$. Therefore

$$
x=\lim _{k \rightarrow \infty} x_{k+1}=\lim _{k \rightarrow \infty} x_{k}-D g(a)^{-1} g\left(x_{k}\right)=x-D g(a)^{-1} g(x)
$$

implies $g(x)=0$ or that $f(x)=y$.

Lemma 0.2. Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be continuously differentiable with $D f(a)$ non-singular for some point $a \in \mathbf{R}^{n}$. Then there exists $\epsilon>0$ such that f is one-to-one on $B_{\epsilon}(a)$. Moreover there is $\lambda>0$ such that

$$
\left\|x_{2}-x_{1}\right\|<\lambda\left\|f\left(x_{2}\right)-f\left(x_{1}\right)\right\| \quad \text { for all } \quad x_{1}, x_{2} \in B_{\epsilon}(a) .
$$

Proof: Choose $\epsilon>0$ so that $x \in B_{\epsilon}(a)$ implies $\left\|D f(a)^{-1}\right\|\|D f(x)-D f(a)\|<1 / 2$. Let $x_{1}, x_{2} \in B_{\epsilon}(a), v_{0}=\operatorname{Df}(a)\left(x_{2}-x_{1}\right)$ and $w_{t}=\operatorname{Df}\left(x_{1}+t\left(x_{2}-x_{1}\right)\right)\left(x_{2}-x_{1}\right)$. Then

$$
\begin{aligned}
\left\|w_{t}-v_{0}\right\| & \leq\left\|D f\left(x_{1}+t\left(x_{2}-x_{1}\right)\right)-D f(a)\right\|\left\|x_{2}-x_{1}\right\| \\
& \leq\left\|D f\left(x_{1}+t\left(x_{2}-x_{1}\right)\right)-D f(a)\right\|\left\|D f(a)^{-1}\right\|\left\|v_{0}\right\|<\frac{1}{2}\left\|v_{0}\right\|
\end{aligned}
$$

It follows from

$$
\|w\|^{2}-2 w_{t} \cdot v_{0}+\left\|v_{0}\right\|^{2}=\left\|w_{t}-v_{0}\right\|^{2} \leq \frac{1}{4}\left\|v_{0}\right\|^{2}
$$

that $2 w_{t} \cdot v_{0} \geq \frac{3}{8}\left\|v_{0}\right\|^{2}$. Let $g(t)=f\left(x_{1}+t\left(x_{2}-x_{1}\right)\right) \cdot v_{0}$. Then $g^{\prime}(t)=w_{t} \cdot v_{0}$ and

$$
\begin{aligned}
\left\|f\left(x_{2}\right)-f\left(x_{1}\right)\right\|\left\|v_{0}\right\| & \geq\left(f\left(x_{2}\right)-f\left(x_{1}\right)\right) \cdot v_{0}=g(1)-g(0)=\int_{0}^{1} g^{\prime}(t) d t=\int_{0}^{1} w_{t} \cdot w_{0} \\
& \geq \frac{3}{8} \int_{0}^{1}\left\|v_{0}\right\|^{2}=\frac{3}{8}\left\|v_{0}\right\|^{2} .
\end{aligned}
$$

Therefore

$$
\left\|f\left(x_{2}\right)-f\left(x_{1}\right)\right\| \geq \frac{3}{8}\left\|D f(a)\left(x_{2}-x_{1}\right)\right\| \geq \frac{3}{8\left\|D f(a)^{-1}\right\|}\left\|x_{2}-x_{1}\right\|
$$

shows f is one-to-one. Taking $\lambda=(8 / 3)\left\|D f(a)^{-1}\right\|$ finishes the proof.
Lemma 0.3. Let $V \subseteq \mathbf{R}^{n}$ be open and $a \in V$. Let $f: V \rightarrow \mathbf{R}^{n}$ be one-to-one and continuous and let $b=f(a)$. If f has continuous inverse $f^{-1}: B_{r}(b) \rightarrow \mathbf{R}^{n}$ for some $r>0$, then

$$
\lim _{y \rightarrow b} g(y) \quad \text { exists if only if } \quad \lim _{x \rightarrow a} g \circ f(x) \quad \text { exists. }
$$

Moreover, if the limits exists they are equal.
Proof: " $\longrightarrow "$ Suppose $\lim _{y \rightarrow b} g(y)=L$ exists. Then for every $\epsilon>0$ there exists $\delta_{1}>0$ such that $y \in \mathcal{D}(g)$ and $0<\|y-b\|<\delta_{1}$ implies $\|g(y)-L\|<\epsilon$. Since f is continuous there is $\delta>0$ such that $x \in V$ and $\|x-a\|<\delta$ implies $\|f(x)-b\|<\delta_{1}$. Moreover, since f is one-to-one $0<\|x-a\|$ implies $0<\|f(x)-b\|$. It follows that $0<\|x-a\|<\delta$ and $x \in \mathcal{D}(g \circ f)$ imply $f(x) \in \mathcal{D}(g)$ and therefore $\|g \circ f(x)-L\|<\epsilon$.
" " Suppose $\lim _{x \rightarrow a} g \circ f(x)=L$ exists. By the previous part $\lim _{y \rightarrow b} g \circ f \circ f^{-1}(y)=L$. Therefore for $\epsilon>0$ there is $\delta_{1}>0$ such that $y \in \mathcal{D}\left(g \circ f \circ f^{-1}\right)$ and $0<\|y-b\|<\delta_{1}$ implies $\left\|g \circ f \circ f^{-1}(y)-L\right\|<\epsilon$. Let $\delta=\min \left(\delta_{1}, r\right)$. Then $y \in \mathcal{D}(g)$ and $0<\|y-b\|<\delta$ implies $y \in \mathcal{D}\left(f^{-1}\right)$ and therefore $\|g(y)-L\|=\left\|g \circ f \circ f^{-1}(y)-L\right\|<\epsilon$.

Corollary 0.4. Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be continuously differentiable with $D f(a)$ non-singular for some point $a \in \mathbf{R}^{n}$ and let $b=f(a)$. Then there is $r>0$ such that f has an inverse function $f^{-1}: B_{r}(b) \rightarrow \mathbf{R}^{n}$ and f^{-1} is differentiable with derivative $D f^{-1}(b)=D f(a)^{-1}$. Proof: Let $\epsilon>0$ be chosen as in Lemma 0.2 and $r>0$ be chosen as in Lemma 0.1. Then f is one-to-one on $B_{\epsilon}(a)$ and $B_{r}(b) \subseteq f\left(B_{\epsilon}(a)\right)$. It follows $f^{-1}: B_{r}(b) \rightarrow B_{\epsilon}(a)$ exists.
Let $y \in B_{r}(b)$ and $x=f^{-1}(y)$. Then $x \in B_{\epsilon}(a)$ and Lemma 0.2 implies

$$
\left\|f^{-1}(y)-f^{-1}(b)\right\|=\|x-a\| \leq \lambda\|f(x)-f(a)\|=\lambda\|y-b\| .
$$

Now since $f^{-1}: B_{r}(b) \rightarrow \mathbf{R}^{n}$ is one-to-one and continuous then Lemma 0.3 implies

$$
\lim _{y \rightarrow b} \frac{\left\|f^{-1}(y)-f^{-1}(b)-D f(a)^{-1}(y-b)\right\|}{\|y-b\|}
$$

exists if and only if

$$
\lim _{x \rightarrow a} \frac{\left\|x-a-D f(a)^{-1}(f(x)-f(a))\right\|}{\|f(x)-f(a)\|}
$$

exists. Estimating gives

$$
\begin{aligned}
& \frac{\left\|x-a-D f(a)^{-1}(f(x)-f(a))\right\|}{\|f(x)-f(a)\|} \\
& \leq\left\|D f(a)^{-1}\right\| \frac{\|f(x)-f(a)-D f(a)(x-a)\|}{\|f(x)-f(a)\|} \\
& \leq \lambda\left\|D f(a)^{-1}\right\| \frac{\|f(x)-f(a)-D f(a)(x-a)\|}{\|x-a\|} \rightarrow 0
\end{aligned}
$$

as $x \rightarrow a$, which implies f^{-1} is differentiable.

