Math 330 Homework 3 Version A

- 1. Determine explicitly the following products of 3×3 elementary row matrices.
 - (i) $E_{12}E_{13}$
 - (ii) $E_2(5)E_{23}$
 - (iii) $E_{12}(-2)E_{13}(3)E_{23}$
 - (iv) $(E_{13}(100))^{-1}$
 - (v) $(E_{12}(-2)E_{13}(3)E_{23})^{-1}$
- **2.** Let $A = \begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix}$. Express A as a product of elementry row matrices.
- **3.** A square matrix $D = [d_{ij}]$ is called diagonal if $d_{ij} = 0$ for $i \neq j$. Let diag (a_1, \ldots, a_n) denote the $n \times n$ diagonal matrix with diagonal elements $d_{ii} = a_i$ for $i = 1, \ldots, n$. Let D = diag(1, 2, 3, 6, 4). What is D^{-1} ?
- **4.** Find the number x for which the matrix

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & x \end{bmatrix}$$

is singular.

- **5.** Let $A \in M_{n \times n}$.
 - (i) If $A^2 = 0$, prove that A is singular.
 - (ii) If $A^2 = A$ and $A \neq I$, prove that A is singular.
 - (iii) If $A^2 = I$, show that A is non-singular and find A^{-1} .
 - (iv) If $A^2 + 3A = I$, show that A is non-singular and find A^{-1} .

Math 330 Homework 3 Version A

6. Let

$$C = \begin{bmatrix} 1 & -2 & 3\\ -1 & 2 & -2\\ 2 & -2 & 4 \end{bmatrix}$$

Find C^{-1} by using the Gauss–Jordan algorithm to find the reduced row echelon form of

1	-2	3	1	0	0	
-1	2	-2	0	1	0	
2	$-2 \\ 2 \\ -2$	4	0	0	1	

Show all work and the row-operations needed.

7. Use Maple to find the reduced row echelon forms of the following matrices.

(i)	$\begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$	$2 \\ 3 \\ 4$	${3 \atop {4} \atop {5}}$	$4 \\ 5 \\ 6$	$\begin{bmatrix} 5\\6\\7 \end{bmatrix}$	
(ii)	$\begin{bmatrix} 0\\1\\1\\1\\1 \end{bmatrix}$	$egin{array}{c} 1 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array}$	$egin{array}{c} 1 \\ 1 \\ 1 \\ 0 \end{array}$	1 1 1 1	
(iii)	$\begin{bmatrix} 1\\2\\6\\8 \end{bmatrix}$	$2 \\ 0 \\ 1 \\ 9$	$\begin{bmatrix} 3 \\ 2 \\ 2 \\ 5 \end{bmatrix}$			
(iv)	$\begin{bmatrix} 1\\ -2\\ 4 \end{bmatrix}$		<u>;</u>	-18 $-\frac{15}{3}$ 0	27 $-\frac{7}{3}$ 18	$ \begin{array}{c} 0 \\ 1 \\ -\frac{1}{2} \end{array} $
					3	

8. Extra Credit: Work problems 7 and 10 from Mathews pages 50–51. The answers are written in the text already. Make sure your work explains in terms of detailed calculations how to get the answers.