Math 330 Homework 3 Version A

1. Determine explicitly the following products of 3×3 elementary row matrices.
(i) $E_{12} E_{13}$
(ii) $E_{2}(5) E_{23}$
(iii) $E_{12}(-2) E_{13}(3) E_{23}$
(iv) $\left(E_{13}(100)\right)^{-1}$
(v) $\left(E_{12}(-2) E_{13}(3) E_{23}\right)^{-1}$
2. Let $A=\left[\begin{array}{cc}1 & 2 \\ -3 & 4\end{array}\right]$. Express A as a product of elementry row matrices.
3. A square matrix $D=\left[d_{i j}\right]$ is called diagonal if $d_{i j}=0$ for $i \neq j$. Let $\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$ denote the $n \times n$ diagonal matrix with diagonal elements $d_{i i}=a_{i}$ for $i=1, \ldots, n$. Let $D=\operatorname{diag}(1,2,3,6,4)$. What is D^{-1} ?
4. Find the number x for which the matrix

$$
B=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & x
\end{array}\right]
$$

is singular.
5. Let $A \in M_{n \times n}$.
(i) If $A^{2}=0$, prove that A is singular.
(ii) If $A^{2}=A$ and $A \neq I$, prove that A is singular.
(iii) If $A^{2}=I$, show that A is non-singular and find A^{-1}.
(iv) If $A^{2}+3 A=I$, show that A is non-singular and find A^{-1}.

Math 330 Homework 3 Version A
6. Let

$$
C=\left[\begin{array}{ccc}
1 & -2 & 3 \\
-1 & 2 & -2 \\
2 & -2 & 4
\end{array}\right]
$$

Find C^{-1} by using the Gauss-Jordan algorithm to find the reduced row echelon form of

$$
\left[\begin{array}{cccccc}
1 & -2 & 3 & 1 & 0 & 0 \\
-1 & 2 & -2 & 0 & 1 & 0 \\
2 & -2 & 4 & 0 & 0 & 1
\end{array}\right]
$$

Show all work and the row-operations needed.
7. Use Maple to find the reduced row echelon forms of the following matrices.
(i) $\left[\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 6 & 7\end{array}\right]$
(ii) $\left[\begin{array}{lllll}0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1\end{array}\right]$
(iii) $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 0 & 2 \\ 6 & 1 & 2 \\ 8 & 9 & 5\end{array}\right]$
(iv) $\left[\begin{array}{ccccc}1 & 5 & -18 & 27 & 0 \\ -2 & \frac{1}{3} & -\frac{15}{3} & -\frac{7}{3} & 1 \\ 4 & 2 & 0 & 18 & -\frac{1}{2}\end{array}\right]$
(v) $\left[\begin{array}{cccc}1 & 12 & -3 & \frac{1}{2} \\ 2 & \sqrt{2} & 4 & -1 \\ -1 & 1 & 0 & 0\end{array}\right]$
8. Extra Credit: Work problems 7 and 10 from Mathews pages 50-51. The answers are written in the text already. Make sure your work explains in terms of detailed calculations how to get the answers.

