Math 330 Homework 5 Version A

1. Let $A, B, C \in M_{3 \times 3}(\mathbf{R})$ such that $\operatorname{det} A=2$, $\operatorname{det} B=4$, $\operatorname{det} C=5$. Find
(i) $\operatorname{det}(A B)$
(ii) $\operatorname{det}(2 B)$
(iii) $\operatorname{det}\left(A^{t}\right)$
(iv) $\operatorname{det}\left(A^{t} C\right)$
(v) $\operatorname{det}\left(C^{-1}\right)$
2. Let $A=\left[\begin{array}{ccc}0 & 1 & 2 \\ 3 & -1 & 3 \\ 1 & -1 & -1\end{array}\right]$. Express A as a product of elementry row matrices.
3. Find the following determinants. Do the calculations by hand; not with a computer.
(i) $\left|\begin{array}{cccc}2 & 0 & 3 & 4 \\ 0 & 3 & -1 & 5 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & -1 & \sqrt{7}\end{array}\right|$
(ii) $\left|\begin{array}{cccc}2 & 1 & -2 & 6 \\ -1 & 0 & -1 & -2 \\ 2 & 0 & 2 & 7 \\ 1 & 1 & 2 & 3\end{array}\right|$
(iii) $\left|\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0\end{array}\right|$
4. Let $A \in M_{m \times n}(\mathbf{R})$ and $P \in M_{m \times m}(\mathbf{R})$.
(i) If P is non-singular prove that $\mathcal{N}(A)=\mathcal{N}(P A)$.
(ii) Give an example with P singular such that $\mathcal{N}(A) \neq \mathcal{N}(P A)$.

Math 330 Homework 5 Version A

5. Suppose $A \in M_{3 \times 3}(\mathbf{R})$ such that $A^{t} A=I$.
(i) Prove that $A^{t}(A-I)=-(A-I)^{t}$.
(ii) Prove that $\operatorname{det} A= \pm 1$.
(iii) Use (i) to prove that if $\operatorname{det} A=1$ then $\operatorname{det}(A-I)=0$.
(iv) Extra Credit: If $A \in M_{n \times n}(\mathbf{R})$ where $n>3$ and $A^{t} A=I$ can you still prove parts (i)-(iii) above? If so, provide the proofs; if not, give a counter example.
6. Compute the inverse of the matrix

$$
A=\left[\begin{array}{lll}
1 & 0 & -4 \\
1 & 2 & -1 \\
4 & 7 & -2
\end{array}\right]
$$

by first computing the adjoint matrix.
7. Extra Credit: Work problem 11 from Mathews page 69.

