Math 330 Homework 7 Version A

1. Consider the quadratic form $X^{t} A X$ where

$$
A=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]
$$

(i) Solve the eigenvalue-eigenvector problem $A V=\lambda V$.
(ii) Find an orthogonal matrix Q such that $Q^{t} A Q$ is diagonal.
2. Use the Gram-Schmidt algorithm to find a set of orthonormal vectors that span the same space as the given vectors.

$$
X_{1}=\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right], \quad X_{2}=\left[\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right]
$$

Do the calculations by hand.
3. Use the Maple subroutine GramSchmidt to find a set of orthonormal vectors that span the same space as the vectors.

$$
X_{1}=\left[\begin{array}{c}
2 \\
-1 \\
1 \\
3 \\
1
\end{array}\right], \quad X_{2}=\left[\begin{array}{c}
7 \\
-1 \\
3 \\
8 \\
6
\end{array}\right], \quad X_{3}=\left[\begin{array}{c}
1 \\
1 \\
-1 \\
1 \\
1
\end{array}\right]
$$

4. Construct a matrix A which has the eigenvectors

$$
V_{1}=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right], \quad V_{2}=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right], \quad V_{3}=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]
$$

with the corresponding eigenvalues

$$
\lambda_{1}=1, \quad \lambda_{2}=-2, \quad \lambda_{3}=5
$$

5. Find the eigenvectors and the eigenvalues by hand for the matrix

$$
A=\left[\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right]
$$

6. Prove that any set of orthonormal vectors is a linearly independent set.

Math 330 Homework 7 Version A

7. The following output shows how to use the Maple subroutine Eigenvectors to find the eigenvectors and eigenvalues of a matrix.
```
1 > restart;
2 > with(LinearAlgebra);
3 > A:=Matrix([[1, 2],[0,4]]);
```

$$
A:=\left[\begin{array}{ll}
1 & 2 \\
0 & 4
\end{array}\right]
$$

4 > Eigenvectors(A);

$$
\left[\begin{array}{l}
1 \\
4
\end{array}\right], \quad\left[\begin{array}{cc}
1 & 2 / 3 \\
0 & 1
\end{array}\right]
$$

Interpret this output and explicitly write down the eigenvectors V_{1} and V_{2} and the corresponding eigenvalues λ_{1} and λ_{2}.
8. Consider the matrix

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]
$$

(i) How many eigenvalues does A have?
(ii) Find all the eigenvectors of A.
(iii) Extra Credit: Prove A has only one linearly independent eigenvector.
(iv) Find the singular values of A.
(v) Extra Credit: Find the singular value decomposition $A=U \Sigma V^{t}$ where U and V are orthogonal matrices and Σ is diagonal.
9. Consider a non-singular matrix $A \in M_{n \times n}$ of the form

$$
A=\left[X_{1}|\cdots| X_{n}\right] \quad \text { where } \quad X_{i} \in \mathbf{R}^{n}
$$

Apply the Gram-Schmidt procedure to the columns of A to obtain the orthonormal set of vectors $\left\{V_{1}, \ldots, V_{n}\right\}$ and define $R=Q^{t} A$ where Q is the orthogonal matrix

$$
Q=\left[V_{1}|\cdots| V_{n}\right] .
$$

(i) Show that $A=Q R$.
(ii) Find Q and R for the matrix

$$
A=\left[\begin{array}{ccc}
1 & 1 & 3 \\
0 & 0 & 2 \\
-1 & 1 & 3
\end{array}\right]
$$

(iii) Extra Credit: Prove that R is always upper triangular.

