Math 330 Homework 8 Version A

1. Let $A \in M_{n \times n}(\mathbf{R})$.
(i) Show that if λ is an eigenvalue of A then $\bar{\lambda}$ is also an eigenvalue of A.
(ii) If $A^{t}=A$, then show that the eigenvalues of A are real.
(iii) Let $B=A^{t} A$. Show that the eigenvalues of B are real and non-negative.
2. Use the Gram-Schmidt algorithm to find a set of orthonormal vectors that span the same space as the given vectors.

$$
X_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], \quad X_{2}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right], \quad X_{3}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right]
$$

3. Let A and B be given by

$$
A=\left[\begin{array}{ccccc}
1 & 3 & 2 & 8 & 3 \\
2 & 6 & 0 & -4 & -1 \\
-1 & -3 & -1 & -3 & 0 \\
1 & 3 & 1 & 3 & 0
\end{array}\right], \quad B=\left[\begin{array}{c}
2 \\
-3 \\
-4 \\
4
\end{array}\right]
$$

(i) Find $\operatorname{dim} \mathcal{C}(A)$ and a basis for $\mathcal{C}(A)$.
(ii) Find $\operatorname{dim} \mathcal{N}(A)$ and a basis for $\mathcal{N}(A)$.
(iii) Find all solution to the equations $A X=B$.
4. Let A and B be given by

$$
A=\left[\begin{array}{ccc}
1 & 3 & 0 \\
-1 & 0 & 1 \\
1 & 0 & 1 \\
3 & -1 & 0
\end{array}\right], \quad B=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

(i) Show that $A^{t} A$ is diagonal.
(ii) Solve the least squares problem $A X=B$.

Math 330 Homework 8 Version A

5. Let A by the matrix

$$
A=\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
0 & 0 & 0 & 0 & 6 \\
0 & 0 & 0 & 7 & 8 \\
0 & 0 & 9 & 1 & 2 \\
0 & 3 & 4 & 5 & 6
\end{array}\right]
$$

(i) Find $\operatorname{det} A$.
(ii) Find $\operatorname{det} 2 A$.
(iii) Find $\operatorname{det}(A-I)$.
(iv) find $\operatorname{det} A^{-1}$.
6. Let A be given by

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 4 \\
1 & 3 & 1
\end{array}\right] .
$$

(i) Write A as a product of elementary row operations.
(ii) Find the inverse A^{-1} of A.
(iii) Verify that $A A^{-1}=I$.
7. If $A, B \in M_{n \times n}$ and $B A=I$ show that $A B=I$.
8. Choose five linear algebra terms that you think are important and carefully write out their definitions.
9. Extra Credit: Correct all errors in previous homework, quiz and exam problems.

