39. Orthogonal Matrices

Definition 39.1. A matrix $Q \in M_{n \times n}(\mathbf{R})$ is called Q orthogonal if $Q^{t} Q=I$.
Suppose that

$$
Q=\left[V_{1}\left|V_{2}\right| \cdots \mid V_{n}\right] \quad \text { where } \quad V_{i} \in \mathbf{R}^{n}
$$

Then

$$
Q^{t} Q=\left[\begin{array}{c}
\frac{V_{1}^{t}}{V_{2}^{t}} \\
\hline \vdots \\
V_{n}^{t}
\end{array}\right]\left[V_{1}\left|V_{2}\right| \cdots \mid V_{n}\right]=\left[\begin{array}{cccc}
V_{1}^{t} V_{1} & V_{1}^{t} V_{2} & \cdots & V_{1}^{t} V_{n} \\
V_{2}^{t} V_{1} & V_{2}^{t} V_{2} & & V_{2}^{t} V_{n} \\
\vdots & & \ddots & \vdots \\
V_{n}^{t} V_{1} & V_{n}^{t} V_{2} & \cdots & V_{n}^{t} V_{n}
\end{array}\right]=\left[V_{i}^{t} V_{j}\right]=I
$$

implies that

$$
V_{i}^{t} V_{j}= \begin{cases}1 & \text { if } i=j \tag{39.1}\\ 0 & \text { if } i \neq j\end{cases}
$$

Definition 39.2. Let $V_{i} \in \mathbf{R}^{m}$ for $i=1, \ldots, n$. The set $\left\{V_{1}, \ldots, V_{n}\right\}$ is said to form an orthonormal set if the vectors V_{i} satisfy (39.1).
Theorem 39.3. An orthonormal set of vectors is a linearly independent set.
Proof: Part of homework assignment 7.
Theorem 39.4. Given a set of linearly independent vectors $\left\{X_{1}, \ldots, X_{n}\right\}$ there exists an orthonormal set of vectors $\left\{V_{1}, \ldots, V_{n}\right\}$ such that

$$
\begin{equation*}
\left\langle X_{1}, \ldots, X_{k}\right\rangle=\left\langle V_{1}, \ldots, V_{k}\right\rangle \tag{39.2}
\end{equation*}
$$

for every $k=1, \ldots, n$.
Before proving Theorem 39.4 here is some notation.
Notation 39.5. The dot product of two vectors $v, w \in \mathbf{R}^{n}$ is given by $v \cdot w=v^{t} w$.
Notation 39.6. The norm of a vector $w \in \mathbf{R}^{n}$ is given by $\|w\|=\sqrt{w \cdot w}$.
Fact 39.7. From vector calculus we know that $v \cdot w=\|v\|\|w\| \cos \theta$ where θ is the angle between the vectors v and w.
Algorithm 39.8. [The Gram-Schmidt Algorithm] Let $X_{i} \in \mathbf{R}^{m}$ for $i=1, \ldots, n$ be an independent set of vectors. Construct the vectors V_{i} as follows

$$
\begin{array}{lc}
Y_{1}=X_{1} & V_{1}=Y_{1} /\left\|Y_{1}\right\| \\
Y_{2}=X_{2}-V_{1}\left(V_{1} \cdot X_{2}\right) & V_{2}=Y_{2} /\left\|Y_{2}\right\| \\
Y_{3}=X_{3}-V_{1}\left(V_{1} \cdot X_{3}\right)-V_{2}\left(V_{2} \cdot X_{3}\right) & V_{3}=Y_{3} /\left\|Y_{3}\right\| \\
\quad \vdots & \\
Y_{n} & =X_{n}-V_{1}\left(V_{1} \cdot X_{n}\right)-V_{2}\left(V_{2} \cdot X_{n}\right)-\cdots-V_{n-1}\left(V_{m-1} \cdot X_{n}\right) \\
& V_{n}=Y_{n} /\left\|Y_{n}\right\| .
\end{array}
$$

Note that since X_{1} is linearly independent, then $\left\|Y_{1}\right\| \neq 0$ and so the division in the first line by $\left\|Y_{1}\right\|$ is well defined. Since X_{2} is linearly independent from X_{1} and consequently V_{1} then $\left\|Y_{2}\right\| \neq 0$. Similarly $\left\|Y_{3}\right\| \neq 0$ and so forth.

Proof of Theorem 39.4: We prove that the vectors V_{i} constructed by Algorithm 39.8 satisfy the necessary properties.
First, we show that if $i=j$ then $V_{i} \cdot V_{j}=1$. Calculate

$$
V_{i} \cdot V_{i}=\frac{Y_{i}}{\left\|Y_{i}\right\|} \cdot \frac{Y_{i}}{\left\|Y_{i}\right\|}=\frac{1}{\left\|Y_{i}\right\|^{2}} Y_{i} \cdot Y_{i}=\frac{1}{Y_{i} \cdot Y_{i}} Y_{i} \cdot Y_{i}=1 .
$$

Next, we show that if $i \neq j$ then $V_{i} \cdot V_{j}=0$. The proof is by induction on k where $i, j \leq k$. If $k=2$ then the only two different indices are 1 and 2 . Since $V_{i} \cdot V_{j}=V_{j} \cdot V_{i}$ we may assume $i=1$ and $j=2$. Then

$$
\begin{aligned}
V_{1} \cdot V_{2} & =V_{1} \cdot \frac{Y_{2}}{\left\|Y_{2}\right\|}=\frac{1}{\left\|Y_{2}\right\|} V_{1} \cdot\left(X_{2}-V_{1}\left(V_{1} \cdot X_{2}\right)\right) \\
& =\frac{1}{\left\|Y_{2}\right\|}\left(V_{1} \cdot X_{2}-\left(V_{1} \cdot V_{1}\right)\left(V_{1} \cdot X_{2}\right)\right)=0
\end{aligned}
$$

since $V_{1} \cdot V_{1}=1$.
For induction on k suppose $V_{i} \cdot V_{j}=0$ for all $i \neq j$ with $i, j \leq k$.
Claim that $V_{i} \cdot V_{j}=0$ for all $i \neq j$ with $i, j \leq k+1$.
Since the induction hypothesis already implies $V_{i} \cdot V_{j}=0$ for all $i \neq j$ with $i, j \leq k$ we may assume that $i<j$ and $j=k+1$. Then

$$
\begin{aligned}
V_{i} \cdot V_{k+1}=V_{i} \cdot \frac{Y_{k+1}}{\left\|Y_{k+1}\right\|} & =\frac{1}{\left\|Y_{k+1}\right\|} V_{i} \cdot\left(X_{k+1}-V_{1}\left(V_{1} \cdot X_{k+1}\right) \cdots-V_{k}\left(V_{k} \cdot X_{k+1}\right)\right) \\
& =\frac{1}{\left\|Y_{k+1}\right\|} V_{i} \cdot\left(X_{k+1}-\sum_{l=1}^{k} V_{l}\left(V_{l} \cdot X_{k+1}\right)\right) \\
& =\frac{1}{\left\|Y_{k+1}\right\|}\left(V_{i} \cdot X_{k+1}-\sum_{l=1}^{k}\left(V_{i} \cdot V_{l}\right)\left(V_{l} \cdot X_{k+1}\right)\right) \\
& =\frac{1}{\left\|Y_{k+1}\right\|}\left(V_{i} \cdot X_{k+1}-\left(V_{i} \cdot V_{i}\right)\left(V_{i} \cdot X_{k+1}\right)\right)=0
\end{aligned}
$$

since $i, l \leq k$ implies $V_{i} \cdot V_{l}=0$ for $l \neq i$ from the induction hypothesis.
Finally, we show that (39.2) holds. Clearly $V_{i} \in\left\langle X_{1}, \ldots, X_{k}\right\rangle$ for all $i=1, \ldots, k$. Therefore $\left\langle V_{1}, \ldots, V_{k}\right\rangle \subseteq\left\langle X_{1}, \ldots, X_{k}\right\rangle$. Since $\left\{V_{1}, \ldots, V_{k}\right\}$ are orthogonal Theorem 39.3 implies they are linearly independent. It follows that $\operatorname{dim}\left\langle V_{1}, \ldots, V_{k}\right\rangle=k$. Therefore $\left\langle V_{1}, \ldots, V_{k}\right\rangle$ is a subspace that has the same dimension as $\left\langle X_{1}, \ldots X_{k}\right\rangle$. Problem 17 in chapter 3 of Mathews now implies that $\left\langle V_{1}, \ldots, V_{k}\right\rangle=\left\langle X_{1}, \ldots, X_{k}\right\rangle$.
Remark 39.9. If one attempts to apply Algorithm 39.8 to a set of n linearly dependent vectors then at some point the algorithm must break down. Otherwise one would obtain

$$
n=\operatorname{dim}\left\langle V_{1}, \ldots, V_{n}\right\rangle=\operatorname{dim}\left\langle X_{1}, \ldots, X_{n}\right\rangle<n
$$

which is a contradiction. Since the only way the algorithm can break down is for $\left\|Y_{i}\right\|=0$ for some $i=1, \ldots, n$. It follows that if the set of vectors $\left\{X_{1}, \ldots, X_{n}\right\}$ is linearly dependent then $Y_{i}=0$ for some $i=1, \ldots, n$.

