Math 330 Final Exam Version A

1. Let

$$
A=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
2 & 0 & -2 \\
3 & 1 & 6
\end{array}\right], \quad x=\left[\begin{array}{c}
-1 \\
7 \\
-1
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{l}
0 \\
2 \\
8
\end{array}\right] .
$$

(i) Find $\frac{1}{3} x$
(ii) Find $x+b$
(iii) Find $x \cdot b$
(iv) Find $\|b\|$
(v) Find $A x$

Math 330 Final Exam Version A
2. Let

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 4 \\
1 & 3 & 1
\end{array}\right]
$$

Write A as $L D U$ where L is lower triangular with ones on its diagonal, D is diagonal and U is upper triangular with ones on its diagonal.
3. Let

$$
A=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 & 2 \\
1 & 2 & 3 & 4 & 5
\end{array}\right]
$$

Find the reduced row echelon form R of A.

Math 330 Final Exam Version A

4. Consider the matrix A with reduced row echelon form R given by

$$
A=\left[\begin{array}{lllll}
6 & 0 & 6 & 1 & 4 \\
0 & 3 & 6 & 3 & 0 \\
1 & 0 & 1 & 0 & 5 \\
1 & 0 & 1 & 4 & 5
\end{array}\right] \quad \text { and } \quad R=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

(i) Find a basis for the subspace $\mathcal{C}(A)$ and state its dimension.
(ii) Find a basis for the subspace $\mathcal{N}(A)$ and state its dimension.
5. Let

$$
A=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 0 & 4
\end{array}\right]
$$

Find $\operatorname{det} A$.

Math 330 Final Exam Version A

6. Let

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]
$$

Find an orthogonal matrix Q and an uper triangular matrix R such that $A=Q R$.
7. Let

$$
Q=\left[\begin{array}{ccc}
\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\
0 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
\frac{2 \sqrt{2}}{3} & \frac{-1}{3 \sqrt{2}} & \frac{-1}{3 \sqrt{2}}
\end{array}\right], \quad R=\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{l}
3 \\
0 \\
0
\end{array}\right]
$$

Note that Q is orthogonal and R upper triangular. Suppose $A=Q R$. Find the x which minimizes $\|A x-b\|$.

Math 330 Final Exam Version A

8. Let

$$
A=\left[\begin{array}{lll}
1 & 2 & 4 \\
0 & 2 & 1 \\
0 & 0 & 3
\end{array}\right]
$$

Find the eigenvectors and eigenvalues of A
9. Let

$$
A=\left[\begin{array}{cc}
2 & 2 \\
-1 & 2
\end{array}\right] .
$$

Find the singular value decomposition $A=U \Sigma V^{T}$ where U and V are orthogonal and Σ is diagonal.

Math 330 Final Exam Version A
10. Let $u, v \in \mathbf{R}^{2}$ and θ be the angle between u and v. Show that $u \cdot v=\|u\|\|v\| \cos \theta$.
11. Let $A \in \mathbf{R}^{m \times n}$ and $B \in \mathbf{R}^{l \times m}$.
(i) Show that $\mathcal{C}(B A) \subseteq \mathcal{C}(B)$.
(ii) Given a concrete example where $\mathcal{C}(B) \neq \mathcal{C}(B A)$.

Math 330 Final Exam Version A
12. Let $A \in \mathbf{R}^{m \times n}$ where $m \neq n$. Suppose that the rank of A is $\operatorname{rank}(A)=r$.
(i) What is $\operatorname{dim} \mathcal{C}(A)$?
(ii) What is $\operatorname{dim} \mathcal{N}(A)$?
(iii) What is $\operatorname{dim} \mathcal{C}(A)^{\perp}$?
(iv) What is $\operatorname{dim} \mathcal{N}(A)^{\perp}$?
(v) Show that $\mathcal{C}(A)^{\perp}=\mathcal{N}\left(A^{T}\right)$.

Math 330 Final Exam Version A

13. Let $A \in \mathbf{R}^{4 \times 7}$.
(i) Find the matrix E such that $A E$ corresponds to the result obtained after performing the column operation $c_{2} \leftarrow c_{2}-3 c_{1}$ on the matrix A.
(ii) Prove or disprove the claim that $\mathcal{N}(A E)=\mathcal{N}(A)$. If true explain why; if false provide a counterexample.
