Math 330 Midterm Version B

1. Determine whether the following pairs of vectors are perpendicular.
(i) Is $\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]$ perpendicular to $\left[\begin{array}{c}-1 \\ 1 \\ -1\end{array}\right]$?
(ii) Is $\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]$ penpendicular to $\left[\begin{array}{c}-1 \\ 0 \\ -1\end{array}\right]$?
2. Let $A=\left[\begin{array}{ccc}1 & 2 & 4 \\ -2 & 3 & 1 \\ -4 & 1 & 2\end{array}\right]$ and $v=\left[\begin{array}{c}3 \\ -1 \\ 2\end{array}\right]$.
(i) Compute $\|v\|$.
(ii) Compute $A v$.

Math 330 Midterm Version B

3. Let $A \in \mathbf{R}^{m \times n}$ and $\mathcal{C}(A)$ be the columnspace of A. Then
(A) $\mathcal{C}(A)=\left\{A x: x \in R^{n}\right\}$.
(B) $\mathcal{C}(A)=\left\{A x: A \in R^{m}\right\}$.
(C) $\mathcal{C}(A)=\left\{x \in \mathbf{R}^{n}: A x=0\right\}$.
(D) $\mathcal{C}(A)=\left\{x \in \mathbf{R}^{m}: A x=0\right\}$.
(E) none of the above.
4. True or false with a counterexample if false and a reason if true.
(i) If $A \in \mathbf{R}^{n \times n}$ is invertible then A^{2} is invertible.
(ii) If P is a permutation matrix corresponding to the row operation $r_{i} \leftrightarrow r_{j}$ where $i \neq j$ then $\mathcal{N}(P)$ is trivial.
(iii) If R is the reduced row echelon form of A then $\mathcal{C}(A)=\mathcal{C}(R)$.

Math 330 Midterm Version B
5. Let

$$
E=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\frac{1}{2} & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Find E^{-1}.
6. Let

$$
A=\left[\begin{array}{lll}
2 & 3 & 2 \\
2 & 3 & 3 \\
2 & 2 & 2
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{l}
3 \\
3 \\
2
\end{array}\right]
$$

Solve the system $A x=b$. Find x.

Math 330 Midterm Version B

7. Let $A \in \mathbf{R}^{4 \times 7}$. Suppose A is a matrix that can be put into echelon form U using elimination without pivoting. How may row operations of the form $r_{i} \leftarrow r_{i}+\alpha r_{j}$ does the elimination algorithm take in general to put A into echelon form? Write these row operations in order.
8. Let $A \in \mathbf{R}^{m \times n}$ and $B \in \mathbf{R}^{l \times m}$. Prove that $(B A)^{T}=A^{T} B^{T}$.

Math 330 Midterm Version B
9. Let

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 4 \\
3 & 4 & 5
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{c}
-6 \\
-12 \\
-18
\end{array}\right]
$$

The nullspace of A is

$$
\mathcal{N}(A)=\left\{\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] c: c \in \mathbf{R}\right\}
$$

One solution to $A x=b$ is

$$
x=\left[\begin{array}{c}
-1 \\
-10 \\
5
\end{array}\right]
$$

Find all solutions.
10. Let

$$
A=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
2 & 2 & 0 & 3 \\
0 & 6 & 5 & 4
\end{array}\right]
$$

Find the reduced row echelon form R of A.

Math 330 Midterm Version B

11. Let

$$
A=\left[\begin{array}{ccccc}
1 & 2 & 5 & 6 & 2 \\
2 & 4 & 4 & 2 & 8 \\
6 & 12 & 1 & 1 & -2 \\
4 & 8 & -3 & -1 & -10
\end{array}\right]
$$

The reduced row echelon form of A is

$$
R=\left[\begin{array}{ccccc}
1 & 2 & 0 & 0 & -1 / 2 \\
0 & 0 & 1 & 0 & 7 / 2 \\
0 & 0 & 0 & 1 & -5 / 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(i) Find $\operatorname{dim}(\mathcal{C}(A))$.
(ii) Find $\operatorname{dim}(\mathcal{N}(A))$.
(iii) Find a basis for $\mathcal{N}(A)$ and the nullspace matrix N corresponding to A.

Math 330 Midterm Version B

12. Let $E_{1}, E_{2} \in \mathbf{R}^{m \times m}$ be row operations of the form

$$
E_{1}=\left[r_{i} \leftarrow r_{i}+\alpha_{1} r_{j}\right] \quad \text { where } \quad i \neq j
$$

and

$$
E_{2}=\left[r_{k} \leftarrow r_{k}+\alpha_{2} r_{l}\right] \quad \text { where } \quad k \neq l .
$$

Is it always true that $E_{1} E_{2}=E_{2} E_{1}$? If true explain why; if not provide a counter example where it is false.
13. Let

$$
A=\left[\begin{array}{ccc}
1 & -1 & -2 \\
2 & 1 & 2 \\
4 & 1 & 8
\end{array}\right]
$$

Find a lower triangular matrix L and an upper triangular U such that $L U=A$.

