Math 330 Midterm Review Version A

1. Know how to solve all homework and quiz problems.

2. Let $u, v \in \mathbf{R}^{2}$ and θ be the angle between u and v. Show that $u \cdot v=\|u\|\|v\| \cos \theta$.
3. Let $A \in \mathbf{R}^{m \times n}$.
(i) Show that the nullspace $\mathcal{N}(A)$ is a subspace of \mathbf{R}^{n}.
(ii) Show that the column space $\mathcal{C}(A)$ is a subspace of \mathbf{R}^{m}.
4. Let $A \in \mathbf{R}^{5 \times 5}$ be an invertible matrix and R the reduced eschelon form of A. Is this enough information to tell what R is? If so, explain and find R, otherwise explain why this is not enough information to find R.
5. Let $A \in \mathbf{R}^{m \times n}$ and $B \in \mathbf{R}^{l \times m}$. Prove that $(B A)^{T}=A^{T} B^{T}$.
6. Let $E_{1}, E_{2} \in \mathbf{R}^{m \times m}$ be row operations of the form

$$
E_{1}=\left[r_{i} \leftarrow r_{i}+\alpha_{1} r_{j}\right] \quad \text { where } \quad i \neq j
$$

and

$$
E_{2}=\left[r_{k} \leftarrow r_{k}+\alpha_{2} r_{l}\right] \quad \text { where } \quad k \neq l .
$$

Is it always true that $E_{1} E_{2}=E_{2} E_{1}$? If true explain why; if not provide a counter example where it is false.
7. Let $A \in \mathbf{R}^{4 \times 7}$. Suppose A is a matrix that can be put into eschelon form U using elimination without pivoting. In general how may row operations $r_{i} \leftarrow r_{i}+\alpha r_{j}$ does the elimination algorithm take to put A into eschelon form? Write these row operations in order.
8. Suppose $A \in \mathbf{R}^{m \times n}$ and that $\mathcal{N}(A)=\{0\}$. Show $A u=A v$ implies $u=v$ for every $u, v \in \mathbf{R}^{n}$.
9. Let

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \quad \text { and } \quad v=\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]
$$

(i) Find $A v$.
(ii) Find $v^{T} v$.
(iii) Find $\|v\|$.
(iv) Find $v v^{T}-2 A+I$.
10. Let

$$
E=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 2 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Find E^{-1}.
11. Let

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 7
\end{array}\right]
$$

Find A^{-1}.
12. Let A be a 3×3 matrix such that

$$
A\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \quad \text { and } \quad \mathcal{N}(A)=\left\{\left[\begin{array}{ll}
1 & 2 \\
1 & 0 \\
0 & 1
\end{array}\right] c: c \in \mathbf{R}^{2}\right\}
$$

(i) Find all solutions x to $A x=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$.
(ii) Find A.
13. Let

$$
A=\left[\begin{array}{cccccc}
1 / 2 & 1 & 0 & 0 & 1 & 5 / 2 \\
5 & 10 & 6 & 0 & 4 & 37 \\
-1 & -2 & 1 & 2 & 5 & -2 \\
3 & 6 & -2 & 1 & 12 & 23 / 2
\end{array}\right]
$$

The reduced row echelon form of A is

$$
R=\left[\begin{array}{cccccc}
1 & 2 & 0 & 0 & 2 & 5 \\
0 & 0 & 1 & 0 & -1 & 2 \\
0 & 0 & 0 & 1 & 4 & 1 / 2 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Math 330 Midterm Review Version A
(i) Find the rank of A.
(ii) Find a basis for the nullspace $\mathcal{N}(A)$. What is the $\operatorname{dimension} \operatorname{dim} \mathcal{N}(A)$?
(iii) Find a basis for the column space $\mathcal{C}(A)$. What is the dimension $\operatorname{dim} \mathcal{C}(A)$?
14. Let

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

Find a lower triangular matrix L and an upper triangular U such that $L U=A$.
15. Answer the following questions about linear independence, span and basis. Give a reason for each of your answers.
(i) Are the vectors

$$
\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

linearly independent?
(ii) Does the vector $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ span the same space as the vector $\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]$?
(iii) Do the vectors

$$
\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

span the space \mathbf{R}^{3} ?
16. True or false with a counterexample if false and a reason if true.
(i) If A is an $n \times n$ matrix then $\operatorname{dim} \mathcal{N}(A)=\operatorname{dim} \mathcal{N}\left(A^{T}\right)$.
(ii) If A is an $m \times n$ matrix and B is an invertible $n \times n$ matrix then $\mathcal{C}(A B)=\mathcal{C}(A)$.
(iii) If P is an $n \times n$ permutation matrix then $P^{n}=I$.

Math 330 Midterm Review Version A
(iv) If R is the reduced row echelon form of A then $\mathcal{C}\left(A^{T}\right)=\mathcal{C}\left(R^{T}\right)$.
17. Let $A=L U$ where

$$
L=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 2 & 1
\end{array}\right] \quad \text { and } \quad U=\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

Solve the system

$$
A x=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Find x.
18. Determine whether the following pairs of vectors are perpendicular
(i) Is $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ perpendicular to $\left[\begin{array}{c}2 \\ -4 \\ 2\end{array}\right]$?
(ii) Is $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ perpendicular to $\left[\begin{array}{c}0 \\ -1 \\ -1\end{array}\right]$?
19. Find the largest possible number of independent vectors among

$$
v_{1}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
2 \\
3 \\
4 \\
5
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
3 \\
4 \\
5 \\
6
\end{array}\right], \quad v_{4}=\left[\begin{array}{l}
4 \\
5 \\
6 \\
7
\end{array}\right], \quad v_{5}=\left[\begin{array}{l}
5 \\
6 \\
7 \\
8
\end{array}\right]
$$

