1. Let

$$A = \begin{bmatrix} 3 & 1\\ 0 & 0\\ 1 & 0\\ -2 & 5 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 0 & 0 & 1\\ -1 & 0 & -2 & -2\\ 2 & 0 & -1 & 4 \end{bmatrix}$$

- (i) Let $\mathcal{C}(A)$ be the column space of the matrix A. Then
 - (A) $\mathcal{C}(A) \subseteq \mathbf{R}^2$.
 - (B) $\mathcal{C}(A) \subseteq \mathbf{R}^3$.
 - (C) $\mathcal{C}(A) \subseteq \mathbf{R}^4$.
 - (D) none of the above.

(ii) Let $\mathcal{C}(A^T)$ be the column space of the matrix A^T . Then

- (A) $\mathcal{C}(A^T) \subseteq \mathbf{R}^2$.
- (B) $\mathcal{C}(A^T) \subseteq \mathbf{R}^3$.
- (C) $\mathcal{C}(A^T) \subseteq \mathbf{R}^4$.
- (D) none of the above.

(iii) Find A^T

(iv) Find BA

2. Let

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} 7 \\ -4 \end{bmatrix}.$$

Find the vector x such that Ax = b.

3. A function $f : \mathbf{R}^n \to \mathbf{R}^m$ is said to be linear if

- (A) f(u+v) = f(u) + f(v) for every $u, v \in \mathbf{R}^n$.
- (B) $f(\alpha u) = \alpha f(u)$ for every $u \in \mathbf{R}^n$ and $\alpha \in \mathbf{R}$.
- (C) f(x) = 0 implies x = 0 for every $x \in \mathbf{R}^n$.
- (D) both (A) and (B).
- (E) both (A), (B) and (C).
- **4.** A function f is said to be one-to-one if f(u) = f(v) implies u = v for every u and v in its domain. Let $A \in \mathbb{R}^{m \times n}$ and define $f: \mathbb{R}^n \to \mathbb{R}^m$ by f(x) = Ax. Show that f is one-to-one if and only if f(x) = 0 implies x = 0 for every $x \in \mathbb{R}^n$.

- **5.** Let $A \in \mathbf{R}^{m \times n}$ and $\mathcal{N}(A)$ be the nullspace of A. Then
 - (A) $\mathcal{N}(A) = \{ Ax : x \in \mathbb{R}^n \}.$
 - (B) $\mathcal{N}(A) = \{ Ax : A \in \mathbb{R}^m \}.$
 - (C) $\mathcal{N}(A) = \{ x \in \mathbf{R}^n : Ax = 0 \}.$
 - (D) $\mathcal{N}(A) = \{ x \in \mathbf{R}^m : Ax = 0 \}.$
 - (E) none of the above.

6. Let
$$A = LU$$
 where

$$L = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ \frac{2}{3} & -\frac{4}{9} & 1 \end{bmatrix} \text{ and } U = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 5 & 6 \\ 0 & 0 & 0 & \frac{1}{7} \end{bmatrix}.$$

Find $\mathcal{N}(A)$.

7. Let

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 2 & 2 \\ 3 & 4 & 5 \end{bmatrix}.$$

(i) What eliminations matrices E_1 , E_2 and E_3 transform A so $U = E_3 E_2 E_1 A$ is in upper triangular or eschelon form?

(ii) Find L so that A = LU.