Math 330 Quiz 2 Version A

1. Let

$$
A=\left[\begin{array}{cc}
3 & 1 \\
0 & 0 \\
1 & 0 \\
-2 & 5
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
-1 & 0 & -2 & -2 \\
2 & 0 & -1 & 4
\end{array}\right]
$$

(i) Let $\mathcal{C}(A)$ be the column space of the matrix A. Then
(A) $\mathcal{C}(A) \subseteq \mathbf{R}^{2}$.
(B) $\mathcal{C}(A) \subseteq \mathbf{R}^{3}$.
(C) $\mathcal{C}(A) \subseteq \mathbf{R}^{4}$.
(D) none of the above.
(ii) Let $\mathcal{C}\left(A^{T}\right)$ be the column space of the matrix A^{T}. Then
(A) $\mathcal{C}\left(A^{T}\right) \subseteq \mathbf{R}^{2}$.
(B) $\mathcal{C}\left(A^{T}\right) \subseteq \mathbf{R}^{3}$.
(C) $\mathcal{C}\left(A^{T}\right) \subseteq \mathbf{R}^{4}$.
(D) none of the above.
(iii) Find A^{T}
(iv) Find $B A$
2. Let

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{c}
7 \\
-4
\end{array}\right] .
$$

Find the vector x such that $A x=b$.
3. A function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is said to be linear if
(A) $f(u+v)=f(u)+f(v)$ for every $u, v \in \mathbf{R}^{n}$.
(B) $f(\alpha u)=\alpha f(u)$ for every $u \in \mathbf{R}^{n}$ and $\alpha \in \mathbf{R}$.
(C) $\quad f(x)=0$ implies $x=0$ for every $x \in \mathbf{R}^{n}$.
(D) both (A) and (B).
(E) both (A), (B) and (C).
4. A function f is said to be one-to-one if $f(u)=f(v)$ implies $u=v$ for every u and v in its domain. Let $A \in \mathbf{R}^{m \times n}$ and define $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ by $f(x)=A x$. Show that f is one-to-one if and only if $f(x)=0$ implies $x=0$ for every $x \in \mathbf{R}^{n}$.

Math 330 Quiz 2 Version A
5. Let $A \in \mathbf{R}^{m \times n}$ and $\mathcal{N}(A)$ be the nullspace of A. Then
(A) $\mathcal{N}(A)=\left\{A x: x \in R^{n}\right\}$.
(B) $\mathcal{N}(A)=\left\{A x: A \in R^{m}\right\}$.
(C) $\mathcal{N}(A)=\left\{x \in \mathbf{R}^{n}: A x=0\right\}$.
(D) $\mathcal{N}(A)=\left\{x \in \mathbf{R}^{m}: A x=0\right\}$.
(E) none of the above.
6. Let $A=L U$ where

$$
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
\frac{2}{3} & -\frac{4}{9} & 1
\end{array}\right] \quad \text { and } \quad U=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 0 & 5 & 6 \\
0 & 0 & 0 & \frac{1}{7}
\end{array}\right]
$$

Find $\mathcal{N}(A)$.

Math 330 Quiz 2 Version A
7. Let

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
2 & 2 & 2 \\
3 & 4 & 5
\end{array}\right]
$$

(i) What eliminations matrices E_{1}, E_{2} and E_{3} transform A so $U=E_{3} E_{2} E_{1} A$ is in upper triangular or eschelon form?
(ii) Find L so that $A=L U$.

