- **1.** The orthogonal complement S^{\perp} of a subspace $S \subset \mathbf{R}^m$ is defined
 - (A) $S^{\perp} = \{ v \cdot y : v \in \mathbf{R}^m \text{ and } y \in S \}.$
 - (B) $S^{\perp} = \{ y \in \mathbf{R}^m : v \cdot y = 0 \text{ for all } v \in S \}.$
 - (C) $S^{\perp} = \{ y \in \mathbf{R}^m : v \cdot y = 0 \text{ for at least one } y \in S \}.$
 - (D) both (B) and (C).
 - (E) none of these.
- **2.** Let $A \in \mathbf{R}^{m \times n}$. Show that $\mathcal{C}(A)^{\perp} = \mathcal{N}(A^T)$.

3. Suppose $A \in \mathbf{R}^{m \times n}$ is factored as A = QR where $Q \in \mathbf{R}^{m \times n}$ is has orthonormal columns and $R \in \mathbf{R}^{n \times n}$ is upper triangular. If

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ 0 & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \end{bmatrix}, \qquad R = \begin{bmatrix} 3 & 2 \\ 0 & 1 \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

then find the point $x \in \mathbf{R}^n$ that minimizes the norm ||Ax - b||.

4. Find an orthonormal basis for the space spanned by the vectors

([7]		ך 1 ק		[1]		
	0		1		2		
Ì	0	,	0	,	3	·	•
l	0		1		4	J	

5. Let $A \in \mathbf{R}^{m \times n}$ where $m \neq n$. Let

$$v \in \mathcal{N}(A^T), \quad w \in \mathcal{C}(A^T), \quad x \in \mathcal{N}(A) \text{ and } y \in \mathcal{C}(A).$$

- (i) How many components does the vector v have?
- (ii) How many components does the vector w have?
- (iii) How many components does the vector x have?
- (iv) Home many components does the vectory have?
- (v) What is $v \cdot y$?
- (vi) What is Ax?
- (vii) Given any vector $z \in \mathbf{R}^n$ is it true that z = v + y for some $v \in \mathcal{N}(A^T)$ and $y \in \mathcal{C}(A)$? Explain your answer.