Math 330 Quiz 3 Version A

1. The orthogonal complement S^{\perp} of a subspace $S \subset \mathbf{R}^{m}$ is defined
(A) $S^{\perp}=\left\{v \cdot y: v \in \mathbf{R}^{m}\right.$ and $\left.y \in S\right\}$.
(B) $S^{\perp}=\left\{y \in \mathbf{R}^{m}: v \cdot y=0\right.$ for all $\left.v \in S\right\}$.
(C) $S^{\perp}=\left\{y \in \mathbf{R}^{m}: v \cdot y=0\right.$ for at least one $\left.y \in S\right\}$.
(D) both (B) and (C).
(E) none of these.
2. Let $A \in \mathbf{R}^{m \times n}$. Show that $\mathcal{C}(A)^{\perp}=\mathcal{N}\left(A^{T}\right)$.

Math 330 Quiz 3 Version A
3. Suppose $A \in \mathbf{R}^{m \times n}$ is factored as $A=Q R$ where $Q \in \mathbf{R}^{m \times n}$ is has orthonormal columns and $R \in \mathbf{R}^{n \times n}$ is upper triangular. If

$$
Q=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\
0 & \frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}}
\end{array}\right], \quad R=\left[\begin{array}{ll}
3 & 2 \\
0 & 1
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]
$$

then find the point $x \in \mathbf{R}^{n}$ that minimizes the norm $\|A x-b\|$.

Math 330 Quiz 3 Version A

4. Find an orthonormal basis for the space spanned by the vectors

$$
\left\{\left[\begin{array}{l}
7 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]\right\}
$$

Math 330 Quiz 3 Version A

5. Let $A \in \mathbf{R}^{m \times n}$ where $m \neq n$. Let

$$
v \in \mathcal{N}\left(A^{T}\right), \quad w \in \mathcal{C}\left(A^{T}\right), \quad x \in \mathcal{N}(A) \quad \text { and } \quad y \in \mathcal{C}(A)
$$

(i) How many components does the vector v have?
(ii) How many components does the vector w have?
(iii) How many components does the vector x have?
(iv) Home many components does the vectory have?
(v) What is $v \cdot y$?
(vi) What is $A x$?
(vii) Given any vector $z \in \mathbf{R}^{n}$ is it true that $z=v+y$ for some $v \in \mathcal{N}\left(A^{T}\right)$ and $y \in \mathcal{C}(A)$? Explain your answer.

