Math 330 Homework 4

1. Let

1. Let

$$A = \begin{bmatrix} -1 & 0 & 1 \\ 2 & 0 & -2 \\ 3 & 1 & 6 \end{bmatrix}, \quad x = \begin{bmatrix} -1 \\ 7 \\ -1 \end{bmatrix} \text{ and } b = \begin{bmatrix} 0 \\ 2 \\ 8 \end{bmatrix}.$$
(i) Find $\frac{1}{3}x$
(ii) Find $x + b$
(iii) Find $x \cdot b$
(iv) Find $\|b\|$
(v) Find Ax
2. Let

	1	2	3]
A =	2	3	4
	1	3	1

Write A as LDU where L is lower triangular with ones on its diagonal, D is diagonal and U is upper triangular with ones on its diagonal.

3. Let

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 & 2 \\ 1 & 2 & 3 & 4 & 5 \end{bmatrix}.$$

Find the reduced row echelon form R of A.

4. Consider the matrix A with reduced row echelon form R given by

A =	$\begin{bmatrix} 6\\0\\1\\1 \end{bmatrix}$	$ \begin{array}{c} 0 \\ 3 \\ 0 \\ 0 \\ 0 \end{array} $	6 6 1 1	$ \begin{array}{c} 1 \\ 3 \\ 0 \\ 4 \end{array} $	$\begin{bmatrix} 4\\0\\5\\5 \end{bmatrix}$	and	R =	$\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$	$ \begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \end{array} $	$ \begin{array}{c} 1 \\ 2 \\ 0 \\ 0 \\ 0 \end{array} $	$ \begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \end{array} $	0 0 0 1	
L	ΓT	0	T	4	5 _			L0	0	0	0	ŢŢ	

(i) Find a basis for the subspace $\mathcal{C}(A)$ and state its dimension.

(ii) Find a basis for the subspace $\mathcal{N}(A)$ and state its dimension.

5. Let

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}$$

•

Find $\det A$.

Math 330 Homework 4

6. Let

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}.$$

Find an orthogonal matrix Q and an upper triangular matrix R such that A = QR.

7. Let

$$Q = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ 0 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{2\sqrt{2}}{3} & \frac{-1}{3\sqrt{2}} & \frac{-1}{3\sqrt{2}} \end{bmatrix}, \qquad R = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \qquad \text{and} \qquad b = \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix}.$$

Note that Q is orthogonal and R upper triangular. Suppose A = QR. Find the x which minimizes ||Ax - b||.

8. Let

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix}.$$

Find the eigenvectors and eigenvalues of A

9. Let

$$A = \begin{bmatrix} 2 & 2\\ -1 & 2 \end{bmatrix}.$$

Find the singular value decomposition $A = U\Sigma V^T$ where U and V are orthogonal and Σ is diagonal.

- **10.** Let $u, v \in \mathbf{R}^2$ and θ be the angle between u and v. Show that $u \cdot v = ||u|| ||v|| \cos \theta$.
- **11.** Let $A \in \mathbf{R}^{m \times n}$ and $B \in \mathbf{R}^{l \times m}$.
 - (i) Show that $\mathcal{C}(BA) \subseteq \mathcal{C}(B)$.
 - (ii) Given a concrete example where $\mathcal{C}(B) \neq \mathcal{C}(BA)$.

12. Let $A \in \mathbf{R}^{m \times n}$ where $m \neq n$. Suppose that the rank of A is rank(A) = r.

- (i) What is $\dim \mathcal{C}(A)$?
- (ii) What is $\dim \mathcal{N}(A)$?
- (iii) What is dim $\mathcal{C}(A)^{\perp}$?
- (iv) What is dim $\mathcal{N}(A)^{\perp}$?
- (v) Show that $\mathcal{C}(A)^{\perp} = \mathcal{N}(A^T)$.

13. Let $A \in \mathbb{R}^{4 \times 7}$.

- (i) Find the matrix E such that AE corresponds to the result obtained after performing the column operation $c_2 \leftarrow c_2 3c_1$ on the matrix A.
- (ii) Prove or disprove the claim that $\mathcal{N}(AE) = \mathcal{N}(A)$. If true explain why; if false provide a counterexample.