Math 330 Liner alg. Eric olson

email:

Please contact me through WebCampus
Office:
MWF 1:00-1:50PM in DMS 238 and through Zoom by appointment Homepage:
http://fractal.math.unr.edu/~ejolson/330/

Upon completion of this course, students will be able to

- Solve linear systems using Gaussian elimination.
- Minimize least squares by Gram-Schmidt orthogonalization.
- Find LU, QR and $\mathrm{U} \Sigma \mathrm{V}^{\mathrm{T}}$ matrix factorizations.

Note that Gaussian elimination provides LU factorization
Gram-Schmidt orthogonalization leads to QR factorization
That other matrix factorization is related to eigenvalues and eigenvectors.
Important: There are three web pages related to this course.
1 The WebCampus webpage will contain the links to turn in the scanned written homework, the Zoom meeting links and used to communicate via electronic messages.

2 There is a link to ㄲo https://fractal.math.unr.edu/~ejolson/330-23/ from the
homepage on WebCampus which is where I will post my announcements about exams, homework assignments and lecture notes (like this one).

3 The textbook is available from the Peason MyLab website. There will also be online homework that needs to be done there.

We will follow the textbook starting from Chapter 1 and ending in Chapter 7. Some sections will be skipped--especially applications that you'll likely see in the engineering, science and economics classes for which this course is required. Some topics introduced in early chapters will be returned to in subsequent chapters and elaborated on.

Teaching a little bit of one topic, then doing something else, and then returning to the first topic again is called the spiral method of teaching mathematics. Although it's like going in circles, this allows each topic time to sink in before it is further developed.

We will do our best to follow the order of presentation in the text.

Let's look at the book and see what's coming up:

Chapter 1 Linear Equations in Linear Algebra 1

INTRODUCTORY EXAMPLE: Linear Models in Economics and Engineering 1

1.1 Systems of Linear Equations 2
$\rightarrow 1.2$ Row Reduction and Echelon Forms $\mathbf{1 3}$
1.3 Vector Equations 26
1.4 The Matrix Equation $A \mathbf{x}=\mathbf{b} \quad 37$
$\rightarrow 1.5$ Solution Sets of Linear Systems 45
1.6 Applications of Linear Systems $\mathbf{5 3}$
$\rightarrow 1.7$ Linear Independence $\mathbf{6 0}$
1.8 Introduction to Linear Transformations 67
1.9 The Matrix of a Linear Transformation 75
1.10 Linear Models in Business, Science, and Engineering 85

Projects 93
Supplementary Exercises 93

Note how sections from chapter 1 are revisited in chapter 2.

Chapter 3 Determinants 171

short, because determinants are mostly
used for theory..

INTRODUCTORY EXAMPLE: Weighing Diamonds 171
3.1 Introduction to Determinants $\mathbf{1 7 2}$
3.2 Properties of Determinants 179
3.3 Cramer's Rule, Volume, and Linear Transformations

188
Projects 197
Supplementary Exercises 197

This chapter could be much longer, but we do only what is necessary to develop techniques for finding eigenvalues later in chapter 5 later.

Chapter 4 Vector Spaces 201

Most of Chapter 4 is an elaboration on what was already introduced in Chapters 1 and 2.

Chapter 5 Eigenvalues and Eigenvectors

INTRODUCTORY EXAMPLE: Dynamical Systems and Spotted Owls 273
~ 5.1 Eigenvectors and Eigenvalues 274

- 5.2 The Characteristic Equation 282
- 5.3 Diagonalization 290
- 5.4 Eigenvectors and Linear Transformations 297

1. 5.5 Complex Eigenvalues 304
5.6 Discrete Dynamical Systems 311
5.7 Applicationsto Differential Equations 321
5.8 Iterative Estimates for Eigenvalues 329
5.9 Applications to Markon Chains 335

Projects 345
Supplementary Exercises $\mathbf{3 4 5}$

We don't have time for many applications, but if there is one you particularly want to learn about, please send me a note on WebCampus saying so. I'll try to add it to the course.

Chapter 6 Orthogonality and Least Squares 349

INTRODUCTORY EXAMPLE: Artificial Intelligence and Machine Learning 349
6.1 Inner Product, Length, and Orthogonality $\mathbf{3 5 0}$
6.2 Orthogonal Sets 358
6.3 Orthogonal Projections 367
$\boldsymbol{*} \boldsymbol{\approx} \mathbf{6} \mathbf{6}$ - The Gram-Schmidt Process $\mathbf{3 7 6}$
$\boldsymbol{x} \boldsymbol{*} \longrightarrow \mathbf{6 . 5}$ Least-Squares Problems $\mathbf{3 8 2}$
$\begin{array}{ll}\text { 6.6 Machipe Learning and Linear Models } & 390 \\ 6.8 & \begin{array}{l}\text { Inn\&r Prodtct Spaces } \\ \text { Applications of Inyer Prodye Spaces } \\ \text { Projects } 413\end{array} \\ 407\end{array}$
Supplementary Exercises 414
This section was the first chapter in the linear algebra book by Boyd and Vandenberghe. It focuses on the second learning objective--optimization, Gram-Schmidt and the QR factorization.

Note that the first learning objective--Gaussian Elimination-was already covered in sections 1.5, 2.2 and 2.5.
Chapter 7 Symmetric Matrices and Quadratic Forms 417
INTRODUCTORY EXAMPLE: Multichannel Image Processing 417
$\rightarrow 7.1$ Diagonalization of Symmetric Matrices 419
7.2 Quadratic Form 425
7.3 Constralned Optimization 432
END $\rightarrow 7.4$ The Singular Value Decomposition 439
Applications to Image Processing and Statistics 449
Projects 457
Supplementary Exercises 457

We won't cover very much from Chapter 7 but just enough to do the singular value decomposition. This is the last matrix factorization and surprisingly important in applications involving digital filtering and compression. For example, this factorization is related to the proper orthogonal decomposition which is used in machine learning and data mining.

On Wednesday we will start chapter 1.
We will not spend too much time of chapter 1, because those topics will be reviewed again in chapter 2 and 4.

