Some how my note-taking program crashed when the emergency fire message started and I lost the first part of the lecture notes. I'll try to recreate them here as best I remember.

We started by finishing up chapter 2. There was one example that needed to be finished by computing the nullspace and the nullspace matrix N .
32. $A=\left[\begin{array}{rrrr}\mathcal{P} & F & \mathcal{P} & \boldsymbol{F} \\ -3 & 9 & -2 & -7 \\ 2 & -6 & 4 & 8 \\ 3 & -9 & -2 & 2\end{array}\right] \sim\left[\begin{array}{rrrr}\mathcal{1} & -3 & 6 & 9 \\ 0 & 0 & 4 & 5 \\ 0 & 0 & 0 & 0\end{array}\right]$

We recalled why the basis for the column space is made from the columns of A corresponding to the pivot variables. The point is that the relationships between the columns of a matrix are unaffected by the row operations and that it's clear the pivot columns in the echelon and reduced echelon forms are independent and that the columns corresponding to the free variables can be written interms of the columns with the pivots.

Thus

$$
\begin{aligned}
& \cot A=\operatorname{apan}\left\{\left[\begin{array}{c}
-3 \\
2 \\
3
\end{array}\right],\left[\begin{array}{c}
-2 \\
4 \\
-2
\end{array}\right]\right\} \\
& \text { and } \operatorname{dim} c o l A=\operatorname{rank} A=2=* \text { of pivot variables }
\end{aligned}
$$

Now we do the null space. First

$$
\begin{aligned}
\operatorname{dim} \operatorname{Nul} A & =\# \text { of free variables } \\
& =4-\# \text { q pivot variables }=2 .
\end{aligned}
$$

By definition Vul A is the solutions to the homogeneous puoblear $A x=0$.

$$
\operatorname{Nu} \mid A=\{x: A x=0\}
$$

reduced echelon form
We already know

$$
\left.\begin{array}{l}
\text { already know } \\
{\left[\begin{array}{rrrr}
-3 & 9 & -2 & -7 \\
2 & -6 & 4 & 8 \\
3 & -9 & -2 & 2
\end{array}\right] \xrightarrow[\substack{\text { is row } \\
\text { equivalut } \\
\text { to }}]{\sim}}
\end{array} \begin{array}{cccc}
x_{2} & x_{2} & x_{3} & x_{4} \\
\hline & 4 & p & Y \\
1 & -3 & 0 & 3 / 2 \\
0 & 0 & 1 & 5 / 4 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

In algebraic form we have

$$
\begin{aligned}
x_{1}-3 x_{2}+3 / 2 x_{4} & =0 \\
x_{3}+5 / 4 x_{4} & =0
\end{aligned}
$$

Solving for the pivot variables yields

$$
\begin{aligned}
& x_{1}=3 x_{2}-3 / 2 x_{4} \\
& x_{3}=-5 / 4 x_{4}
\end{aligned}
$$

The solution to $A x=0$ is

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
3 x_{2}-3 / 2 x_{4} \\
x_{2} \\
-5 / 4 x_{4} \\
x_{4}
\end{array}\right]=x_{2}\left[\begin{array}{l}
3 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-3 / 2 \\
0 \\
-5 / 4 \\
1
\end{array}\right]
$$

Thur tors

$$
\text { Nhl A A os } \operatorname{span}\left\{\left[\begin{array}{l}
3 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-3 / 2 \\
0 \\
-5 / 4 \\
1
\end{array}\right]\right\} \text {. }
$$

The nullspace matrix is the matrix ashose columns are a basis for the nullspace.

$$
N=\left[\begin{array}{cc}
3 & -3 / 2 \\
1 & 0 \\
0 & -5 / 4 \\
0 & 1
\end{array}\right]
$$

The main point is so we can write
$N u l A=\operatorname{col} N$.

3.1 Introduction to Determinants

The chapter is very condensed because determinants are less useful for practical computations than for theory.

There is another linear algebra course on theory called Math 430. That course will build more intuition about determinants but also focuses on other things.

Somehow determinants always get short changed.

Consider a 2×2 matrix

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \text { and solving } A x=b
$$

Were not interested night now about the right-hand side of the equation so write the augmented matrix as

$$
\left[A(b)=\left[\begin{array}{ll|l}
a & b & ? \\
c & d & ?
\end{array}\right]\right.
$$

Now, if $a \neq 0$ we could perform the elionivation step

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad r_{2}-r_{2}-\frac{c}{a} r_{1}} \\
& {\left[\begin{array}{cc}
a & b \\
0 & d-\frac{c}{a} b
\end{array}\right]=\left[\begin{array}{cc}
a & b \\
0 & \frac{a d-b c}{a}
\end{array}\right]}
\end{aligned}
$$

ave arrive at an augmented quatrix that Looks lues

$$
\left[\begin{array}{cc|c}
x 1 & x \\
a & b & ? \\
0 & \frac{a d-b c}{a} & ?
\end{array}\right]
$$

Which means

$$
\begin{aligned}
a x_{1}+b x_{2} & =? \\
\frac{a d u b c}{a} x_{2} & =?
\end{aligned}
$$

Solving for x_{2} yields

$$
x_{2}=\frac{a ?}{a d-b c}
$$

this in the denominator is called the determinant...

We like to call our friends by name and this denominator is so friendly it keeps appearing...
What happens if we soap rows fires?

$$
\begin{array}{lc}
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]} & \begin{array}{c}
r_{1} \leftrightarrow r_{2} \\
\text { Now eliminate... }
\end{array} \\
{\left[\begin{array}{ll}
c & d \\
a & b
\end{array}\right]} & \begin{array}{cc}
r_{2}-r_{2}-\frac{a}{c} r_{1}
\end{array} \\
{\left[\begin{array}{cc}
c & d \\
0 & b-\frac{a}{c} d
\end{array}\right]=\left[\begin{array}{cc}
c & d \\
0 & \frac{b c-a d}{c}
\end{array}\right]}
\end{array}
$$

Now solving for x_{2} yields

$$
x_{2}=\frac{c \cdot ?}{b c-a d}=\frac{-c \cdot ?}{a d-b c}
$$

here is the determinant again.

One can find deteraninants for a 3×3 matrix similar. Consider

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

in this case we rescale the rows ahead of time to prevent fractious, as the algebra is almady difficult,

$$
\begin{aligned}
& r_{2}-a_{11} r_{2} \\
& r_{3}-a_{11} r_{2}
\end{aligned}
$$

Elimination

$$
\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{11} a_{21} & a_{11} a_{22} & a_{11} a_{23} \\
a_{11} a_{31} & a_{11} a_{32} & a_{11} a_{33}
\end{array}\right]
$$

$$
\begin{aligned}
& r_{2}-r_{2}-a_{21} r_{1} \\
& r_{3}-r_{3}-a_{31} r_{1}
\end{aligned}
$$

$$
-\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{11} a_{22}-a_{12} a_{21} & a_{11} a_{23}-a_{13} a_{21} \\
0 & a_{11} a_{32}-a_{12} a_{31} & a_{11} a_{33}-a_{13} a_{31}
\end{array}\right]
$$

Now do the same thing for the second plrot.n

$$
r_{3}-\left(a_{11} a_{22}-a_{12} a_{21}\right) r_{3}
$$

$$
\left[\begin{array}{c|cc}
a_{11} & a_{12} & a_{13} \\
0 & a_{11} a_{22}-a_{12} a_{21} & a_{11} a_{23}-a_{13} a_{21} \\
0 & \left(a_{11} a_{22}-a_{12} a_{21}\right)\left(a_{11} a_{32}-a_{12} a_{31}\right) & \left(a_{11} a_{22}-a_{12} a_{21}\right)\left(a_{11} a_{33}-a_{13} a_{31}\right)
\end{array}\right]
$$

Now eliminate

$$
r_{3} \leftarrow r_{3}-\left(a_{11} a_{32}-a_{12} a_{31}\right) r_{2}
$$

$$
\begin{aligned}
& {\left[\begin{array}{c|cc}
a_{11} & a_{12} & a_{13} \\
0 & a_{11} a_{22}-a_{12} a_{21} & a_{11} a_{23}-a_{13} a_{21} \\
0 & 0 & \vdots
\end{array}\right]} \\
& =\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{11} a_{22}-a_{12} a_{21} & a_{11} a_{23}-a_{13} a_{21} \\
0 & 0 & a_{11} \Delta
\end{array}\right] . \\
& \dot{\Delta}=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-a_{13} a_{22} a_{31}
\end{aligned}
$$

Do elimination vote 3×3 and discover thad

identity in de nominator as the determinant

It turns out this expressions called determinants which appear in the denominator when solving $A x=b$ have a pattern. The pattern can be seen by expressing the determinant of a larger matrix inductively in terms of the determinants of a bunch of smaller matrices.

To define the determinant of a large matrix inductively in terms of smaller matrices, we need a kay to create smaller mertrius som larger ones.

Given a matrix A let $A_{i j}$ be the submatrix of A formed by deleting the $i^{\text {th }}$ row and $j^{\text {th }}$ column:

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & 2 & 6 \\
5 & 4 & 1 \\
1 & 0 & 3
\end{array}\right] \in \mathbb{R}^{3 \times 3} \\
& A_{2,3}=\left[\begin{array}{lll}
1 & 2 & 6 \\
5 & 4 & 1 \\
1 & 0 & 3
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right] \in \mathbb{R}^{2 \times 2} \\
& A_{3,1}=\left[\begin{array}{lll}
1 & 2 & 6 \\
5 & 4 & 1 \\
1 & 0 & 3
\end{array}\right]=\left[\begin{array}{ll}
2 & 6 \\
4 & 1
\end{array}\right] \in \mathbb{R}^{2 \times 2}
\end{aligned}
$$

Next time well use these submatices to write down a general expression for an $n \times n$ matrix in terms of determinants of $(n-1) x(n-1)$ matrices.

