- **1.** Suppose U_1 and U_2 are subspaces of V. The sum $U_1 + U_2$ is
 - (A) the largest subspace of V contained in $U_1 \cup U_2$.
 - (B) the smallest subspace of V containing $U_1 \cup U_2$.
 - (C) the largest subspace of V contained in $U_1 \cap U_2$.
 - (D) the smallest subspace of V containing $U_1 \cap U_2$.
 - (E) none of these.
- **2.** A list of vectors (v_1, \ldots, v_m) in V are linearly independent if and only if
 - (A) every choice of $a_1, \ldots, a_m \in \mathbf{F}$ makes $a_1v_1 + \cdots + a_mv_m$ equal 0.
 - (B) the only choice of $a_1, \ldots, a_m \in \mathbf{F}$ that makes $a_1v_1 + \cdots + a_mv_m$ equal 0 is $a_1 = \cdots = a_m = 0$.
 - (C) there exists $a_1, \ldots, a_m \in \mathbf{F}$, not all 0, such that $a_1v_1 + \cdots + a_mv_m = 0$.
 - (D) there exists $a_1, \ldots, a_m \in \mathbf{F}$, not all 0, such that $a_1v_1 + \cdots + a_mv_m \neq 0$.
 - (E) none of these.
- **3.** Let $T \in \mathcal{L}(V, W)$ and (v_1, \ldots, v_n) be a basis of V and (w_1, \ldots, w_m) be a basis of W. With respect to these basis, the matrix M(T) is defined as the $m \times n$ matrix with entries $a_{j,k}$ where
 - (A) $w_j = a_{j,1}Tv_1 + \dots + a_{j,n}Tv_n.$
 - (B) $w_k = a_{1,k}Tv_1 + \dots + a_{n,k}Tv_n.$
 - (C) $Tv_j = a_{j,1}w_1 + \dots + a_{j,m}w_m.$
 - (D) $Tv_k = a_{1,k}w_1 + \dots + a_{m,k}w_m$.
 - (E) none of these.
- 4. Two vector spaces are called isomorphic if
 - (A) there is a third vector space containing both of them.
 - (B) they contain the same number of elements.
 - (C) there is an invertible linear map from one vector space onto the other one.
 - (D) their intersection is the trivial subspace.
 - (E) none of these.
- 5. QED at the end of a mathematical proof is
 - (A) an abreviation for quite easily done.
 - (B) an abreviation for quantum electrodynamics.
 - (C) an abreviation for quod erat demonstrandum.
 - (D) the initials the famous Greek mathematician Q. E. Democritis who invented the deductive method of proof.
 - (E) none of the these.

6. Consider the matrix A with reduced row echelon form R given by

$$A = \begin{bmatrix} 1 & 3 & 1 & -2 & 4 \\ -1 & -5 & -3 & 5 & 10 \\ 2 & -2 & -6 & 7 & 56 \\ 1 & 7 & 5 & -9 & -32 \end{bmatrix} \quad \text{and} \quad R = \begin{bmatrix} 1 & 0 & -2 & 0 & 5 \\ 0 & 1 & 1 & 0 & 5 \\ 0 & 0 & 0 & 1 & 8 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

(i) Find a basis for the subspace range(A) and state its dimension.

(ii) Find a basis for the subspace null(A) and state its dimension.

- **7.** Answer the following true or false questions. Provide a counterexample if false and a brief justification if true.
 - (i) **True or False:** Every operator on a finite-dimensional, nonzero, real vector space has an invarient subspace of dimension 1.

(ii) True or False: Let V be a real vector space with dim V = 1 and let $T \in \mathcal{L}(V)$. Then there exists $\lambda \in \mathbf{R}$ such that $Tv = \lambda v$ for all $v \in V$.

(iii) True or False: Suppose that U and W are subspaces of V. Then $V = U \oplus W$ if and only if V = U + W and $U \cap W = \{0\}$.

- 8. Answer the following true or false questions. Provide a counterexample if false and a brief justification if true.
 - (i) True or False: Suppose V and W are finite dimensional vector spaces. If $T \in \mathcal{L}(V, W)$ then T is injective if and only if T is surjective.

(ii) True or False: If V and W are finite dimensional vector spaces, then $\mathcal{L}(V, W)$ is finite dimensional and dim $\mathcal{L}(V, W) = (\dim V)(\dim W)$.

(iii) True or False: Let V be a finite dimensional vector space and $T, S \in \mathcal{L}(V)$. Then dim null $(TS) = \dim null(T) + \dim null(S)$.

9. Prove the following theorem:

Theorem 5.10: Every operator on a finite-dimensional, nonzero, complex vector space has an eigenvalue.

10. Work one of the following homework problems:

[§]**1**#**9.** Prove that the union of two subspaces of *V* is a subspace of *V* if and only if one of the subspaces is contained in the other.

§5#4. Suppose that $S, T \in \mathcal{L}(V)$ are such that ST = TS. Prove that $\operatorname{null}(T - \lambda I)$ is invariant under S for every $\lambda \in \mathbf{F}$.

11. Work one of the following homework problems:

§**3#21.** Suppose that V is finite dimensional and $S, T \in \mathcal{L}(V)$. Prove that ST is invertible if and only if both S and T are invertible.

§**3#22.** Suppose that V is finite dimensional and $S, T \in \mathcal{L}(V)$. Prove that ST = I if and only if TS = I.

12. For extra credit prove the following theorem:

Theorem 3.4: If V is finite dimensional and $T \in \mathcal{L}(V, W)$, then range(T) is a finite-dimensional subspace of W and

 $\dim V = \dim \operatorname{null}(T) + \dim \operatorname{range}(T).$