Math 430 Quiz 1 Version A

1. We say V is the direct sum of subspaces U_{1}, \ldots, U_{m}, written $V=U_{1} \oplus \cdots \oplus U_{m}$, if
(A) for each $j \neq k$ then $U_{k} \cap U_{j}=\{0\}$.
(B) for each $u_{j} \in U_{j}$ and $u_{k} \in U_{k}$ with $j \neq k$ then u_{j} is orthogonal to u_{k}.
(C) each $v \in V$ can be written uniquely as a sum $u_{1}+\cdots+u_{m}$, where $u_{j} \in U_{j}$.
(D) $U_{1} \cup \cdots \cup U_{m}$ is a subspace.
(E) none of these.
2. Suppose U_{1}, U_{2} are subspaces of V. The sum $U_{1}+U_{2}$ is
(A) the largest subspace of V containing $U_{1} \cap U_{2}$.
(B) the smallest subspace of V containing $U_{1} \cap U_{2}$.
(C) the largest subspace of V containing $U_{1} \cup U_{2}$.
(D) the smallest subspace of V containing $U_{1} \cup U_{2}$.
(E) none of these.
3. Let $\left(v_{1}, \ldots, v_{m}\right)$ be a list of vectors in V. Then
(A) $\operatorname{span}\left(v_{1}, \ldots, v_{m}\right)=\left\{a_{1} v_{1}+\cdots+a_{m} v_{m}: a_{1}, \ldots, a_{m} \in V\right\}$.
(B) $\operatorname{span}\left(v_{1}, \ldots, v_{m}\right)=\left\{a_{1} v_{1}+\cdots+a_{m} v_{m}: a_{1}, \ldots, a_{m} \in \mathbf{F}\right\}$.
(C) $\operatorname{span}\left(v_{1}, \ldots, v_{m}\right)=\left\{a_{1} v_{1} \cup \cdots \cup a_{m} v_{m}: a_{1}, \ldots, a_{m} \in V\right\}$.
(D) $\operatorname{span}\left(v_{1}, \ldots, v_{m}\right)=\left\{a_{1} v_{1} \cup \cdots \cup a_{m} v_{m}: a_{1}, \ldots, a_{m} \in \mathbf{F}\right\}$.
(E) none of these.
4. A vector space V is called finite dimensional
(A) if some finite list $\left(v_{1}, \ldots, v_{m}\right)$ of vectors spans V.
(B) if the cardinality of any subspace of V is finite.
(C) if every combination of vectors in V is orthogonal.
(D) if there are subspaces U_{1}, \ldots, U_{m} such that $V=U_{1} \oplus \cdots \oplus U_{m}$.
(E) none of these.
5. A list of vectors $\left(v_{1}, \ldots, v_{m}\right)$ in V are linearly dependent if and only if
(A) every choice of $a_{1}, \ldots, a_{m} \in \mathbf{F}$ makes $a_{1} v_{1}+\cdots+a_{m} v_{m}$ equal 0 .
(B) the only choice of $a_{1}, \ldots, a_{m} \in \mathbf{F}$ that makes $a_{1} v_{1}+\cdots+a_{m} v_{m}$ equal 0 is $a_{1}=\cdots=a_{m}=0$.
(C) there exists $a_{1}, \ldots, a_{m} \in \mathbf{F}$, not all 0 , such that $a_{1} v_{1}+\cdots+a_{m} v_{m}=0$.
(D) there exists $a_{1}, \ldots, a_{m} \in \mathbf{F}$, not all 0 , such that $a_{1} v_{1}+\cdots+a_{m} v_{m} \neq 0$.
(E) none of these.

Math 430 Quiz 1 Version A
6. Use

Theorem 2.6: In a finite-dimensional vector space, the length of every linearly independent list of vectors is less than or equal to the length of every spanning list of vectors.
to prove
Theorem 2.14: Any two bases of a finite-dimensional vector space have the same length.

Math 430 Quiz 1 Version A
7. Prove one of the following:

Proposition 1.8: Suppose that U_{1}, \ldots, U_{n} are subspaces of V. Then $V=U_{1} \oplus \cdots \oplus U_{n}$ if and only if both the following conditions hold:
(a) $V=U_{1}+\cdots+U_{n}$;
(b) the only way to write 0 as a sum $u_{1}+\cdots+u_{n}$, where each $u_{j} \in U_{j}$, is by taking all the u_{j} 's equal to 0 .
Proposition 2.8: A list $\left(v_{1}, \ldots, v_{n}\right)$ of vectors in V is a basis of V if and only if every $v \in V$ can be written uniquely in the form

$$
v=a_{1} v_{1}+\cdots+a_{n} v_{n}
$$

where $a_{1}, \ldots, a_{n} \in \mathbf{F}$.

