- **1.** We say V is the direct sum of subspaces U_1, \ldots, U_m , written $V = U_1 \oplus \cdots \oplus U_m$, if
 - (A) for each $j \neq k$ then $U_k \cap U_j = \{0\}$.
 - (B) for each $u_j \in U_j$ and $u_k \in U_k$ with $j \neq k$ then u_j is orthogonal to u_k .
 - (C) each $v \in V$ can be written uniquely as a sum $u_1 + \cdots + u_m$, where $u_i \in U_i$.
 - (D) $U_1 \cup \cdots \cup U_m$ is a subspace.
 - (E) none of these.
- **2.** Suppose U_1, U_2 are subspaces of V. The sum $U_1 + U_2$ is
 - (A) the largest subspace of V containing $U_1 \cap U_2$.
 - (B) the smallest subspace of V containing $U_1 \cap U_2$.
 - (C) the largest subspace of V containing $U_1 \cup U_2$.
 - (D) the smallest subspace of V containing $U_1 \cup U_2$.
 - (E) none of these.

3. Let (v_1, \ldots, v_m) be a list of vectors in V. Then

- (A) $\operatorname{span}(v_1, \dots, v_m) = \{ a_1 v_1 + \dots + a_m v_m : a_1, \dots, a_m \in V \}.$
- (B) $\operatorname{span}(v_1, \ldots, v_m) = \{ a_1 v_1 + \cdots + a_m v_m : a_1, \ldots, a_m \in \mathbf{F} \}.$
- (C) $\operatorname{span}(v_1, \dots, v_m) = \{ a_1 v_1 \cup \dots \cup a_m v_m : a_1, \dots, a_m \in V \}.$
- (D) $\operatorname{span}(v_1, \ldots, v_m) = \{ a_1 v_1 \cup \cdots \cup a_m v_m : a_1, \ldots, a_m \in \mathbf{F} \}.$
- (E) none of these.

4. A vector space V is called finite dimensional

- (A) if some finite list (v_1, \ldots, v_m) of vectors spans V.
- (B) if the cardinality of any subspace of V is finite.
- (C) if every combination of vectors in V is orthogonal.
- (D) if there are subspaces U_1, \ldots, U_m such that $V = U_1 \oplus \cdots \oplus U_m$.
- (E) none of these.

5. A list of vectors (v_1, \ldots, v_m) in V are linearly dependent if and only if

- (A) every choice of $a_1, \ldots, a_m \in \mathbf{F}$ makes $a_1v_1 + \cdots + a_mv_m$ equal 0.
- (B) the only choice of $a_1, \ldots, a_m \in \mathbf{F}$ that makes $a_1v_1 + \cdots + a_mv_m$ equal 0 is $a_1 = \cdots = a_m = 0$.
- (C) there exists $a_1, \ldots, a_m \in \mathbf{F}$, not all 0, such that $a_1v_1 + \cdots + a_mv_m = 0$.
- (D) there exists $a_1, \ldots, a_m \in \mathbf{F}$, not all 0, such that $a_1v_1 + \cdots + a_mv_m \neq 0$.
- (E) none of these.

6. Use

Theorem 2.6: In a finite-dimensional vector space, the length of every linearly independent list of vectors is less than or equal to the length of every spanning list of vectors.

to prove

Theorem 2.14: Any two bases of a finite-dimensional vector space have the same length.

7. Prove one of the following:

Proposition 1.8: Suppose that U_1, \ldots, U_n are subspaces of V. Then $V = U_1 \oplus \cdots \oplus U_n$ if and only if both the following conditions hold: (a) $V = U_1 + \cdots + U_n$;

(b) the only way to write 0 as a sum $u_1 + \cdots + u_n$, where each $u_j \in U_j$, is by taking all the u_j 's equal to 0.

Proposition 2.8: A list (v_1, \ldots, v_n) of vectors in V is a basis of V if and only if every $v \in V$ can be written uniquely in the form

$$v = a_1 v_1 + \dots + a_n v_n,$$

where $a_1, \ldots, a_n \in \mathbf{F}$.